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1. Complex Numbers

In this chapter, we aim to give an understanding of the basics of complex numbers, includ-
ing:

• Representations of Complex Numbers

• De Moivre's Theorem

• Manipulations in the Argand Diagram

• Basic Functions of a Complex Variable

• Some examples

The material covered in this section is done so to a relatively shallow depth due to the fact
that we use complex numbers merely as a tool for calculation, and further study of their
properties is not required. As such, proofs of most of the formulae quoted in this section
will not be included.
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1.1 Representations of Complex Numbers

So what is a complex number? The �eld of complex numbers includes all real integers.
The most basic way of representing a complex number is in the form:

z = x+ iy (1.1)

where x and y are real integers, and i ≡
√
−1. The coe�cient of i is known as the imagi-

nary part of a complex number, while the remainder is known as the real part. In the case
where y = 0, the complex number is purely real; all the real integers are just purely real
complex numbers. In the case where x = 0, the complex number is purely imaginary.

The complex number z is related to the complex number z̄:

z̄ = x− iy (1.2)

This is known as the complex conjugate of z. In fact, the complex conjugate has a more
general de�nition; it is the complex number that satis�es:

zz̄ = |z|2 (1.3)

where |z| is the modulus, or magnitude, of z. This is because the modulus must always be
a real number, and so the imaginary parts must cancel in the multiplication.

zz̄ = (x+ iy)(x− iy)

= x2 − ixy + ixy + y2

= x2 + y2

= |z|2

The de�nition in (1.3) holds true for all the representations of a complex number.

1.1.1 The Argand Diagram and Polar form

From the representation above, it is clear that z appears to represent some sort of coordi-
nates of a point if we take account both of the real and imaginary part. This point can be
sketched on what is known as the Argand Diagram, as shown in Figure (1.1). It is conven-
tion to represent the real part of z along the x-axis, and the imaginary part along the y-axis.

As we have already done work with plane polar coordinates, it should be pretty obvious to
most of you that another way of representing a complex number is using this coordinate
system.

z = r(cos θ + i sin θ) (1.4)

r2 = x2 + y2 (1.5)

θ = tan−1
(y
x

)
(1.6)

r gives the modulus of the complex number, and θ is known as it's argument. We often
use "cis θ" to abbreviate cos θ + i sin θ. Note that conventionally, θ is de�ned in an anti-
clockwise direction from 0 to 2π for a single revolution.
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1.2 De Moivre's Theorem

De Moivre's Theorem simply states that, for a complex number z:

zn = rn(cosnθ + i sinnθ) = rneinθ (1.7)

This is one of the most fundamental results in this entire chapter, and is used in nearly all
of the mathematics based questions frequently asked in examinations.

1.2.1 Proving De Moivre's Theorem

We know from prior knowledge concerning exponentials that when you raise an exponential
to a power, you simply multiply the exponent by that power. Thus, to prove De Moivre's
theorem, we need to show equivalence between cos θ + i sin θ and eiθ. This can be done in
two ways:

• Taylor Expansion - We can consider the Taylor series expansion of cos θ and sin θ. If
you are unsure of what these are, please refer to the section on the Taylor series in
the CP4 notes.

cos θ = 1− θ2

2!
+
θ4

4!
− . . .

sin θ = θ − θ3

3!
+
θ5

5!
− . . .

cos θ + i sin θ =

(
1− θ2

2!
+
θ4

4!
− . . .

)
+ i

(
θ − θ3

3!
+
θ5

5!
− . . .

)
= 1 + iθ +

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . .

= eiθ

• Di�erential Equation - We can set up a di�erential equation in z and solve it with a
general solution to prove the result. If you are unfamiliar on how to do this, please
refer to the material in Chapter (2).

z = cos θ + i sin θ

dz

dθ
= − sin θ + i cos θ

= iz

dz

dθ
= iz

dz

z
= idθ

→ z = eiθ

This is a much more elegant proof than the �rst as it does not require the use of
approximations.

De Moivre's theorem leads directly to two very useful results:

cos θ =
1

2

(
eiθ + e−iθ

)
(1.8)

sin θ =
1

2i

(
eiθ − e−iθ

)
(1.9)

As we will see with some of the examples in Section (1.5), these can be used to prove
results involving series of trigonometric functions.
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1.3 Manipulations in the Argand Diagram

Figure 1.1: The Argand Diagram showing a complex number z

We can perform a number of operations on complex numbers in the Argand Diagram,
including the following:

• Rotation - Conventionally, θ increases when moving in an anticlockwise direction.
Hence, a rotation anticlockwise of zθ by an angle α is analogous to multiplying by a
complex number zα with unit modulus:

zθ = reiθ

zα = eiα

zθ · zα = reiθ · eiα

= rei(θ+α)

= zθ+α

• Scaling - The is simply changing the modulus of a complex number by multiplying
by a real scaling factor.

z = reiθ

z′ = rb eiθ

for some real scalar b. For |b| > 1, we are increasing the modulus, while for |b| < 1,
we are decreasing it.

• Mirroring - We can mirror a complex number in the real axis by instead representing
it's complex conjugate. This is because complex conjugation reverses the sign of the
imaginary part while keeping the real part the same.

z = reiθ

z′ = re−iθ
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Like in the xy plane, we can also represent a number of curves in the Argand Diagram. If
you are unsure of what a particular representation shows, the simply let z = x + iy and
simplify the resulting expression. This should give the equation of the curve in Cartesian
Coordinates.

• Circle - A circle of radius r centred on some complex number zo is given by:

|z − zo| = r

• Ray - A ray from a point zo outwards at some angle θ to the real axis is given by:

arg(z − zo) = θ

Note that this does not include the point zo (we can show this using an open circle
on zo).

• Perpendicular bisector - The perpendicular bisector of the line joining z1 and z2 is
given by:

|z − z1| = |z − z2|

• Spiral - A spiral or snail pattern is represented in the Argand diagram by:

z = teit

for some parameter t. This is because as the argument increases, so does the modulus
(unlike for a circle). Try sketching this one yourself.

• Ellipse - An ellipse with foci z1 and z2 can be represented as:

|z − z1|+ |z − z2| = r

This is because the locus of an ellipse is the set of points that satisfy the property
where the sum of their distance from two other points is equal to a constant value,
in this case r.

• Hyperbola - A hyperbola with foci z1 and z2 in the complex plane can be represented
as:

|z − z1| − |z − z2| = ±r

As always, it is a good exercise to go through the process of �nding the Cartesian forms
of these representations for yourself, as some can prove to be quite algebraically intensive.
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1.4 Basic Functions of a Complex Variable

In this section, we aim to cover some basic functions of complex numbers, or rather func-
tions of a complex variable. Evidently, this will be a very basic outline, as more complex
ideas will be covered in the notes entitled "Functions of a Complex Variable".

• Exponentials - In general, we want to let z = x + iy in order to simplify these
expressions.

ez = ex+iy

= exeiy

= ex cos y + iex sin y

• Logarithms - We want to let z = rei(θ+2kπ). We have to include this complex phase
as the function may be periodic/multivalued. For some integer k:

ln(z) = log
(
reiθ+2kπi

)
= log(r) + log

(
eiθ+2kπi

)
= log(r) + iθ + 2kπi

• Trigonometric and Hyperbolic Functions - As could be guessed at by their similar
form, there are relationships between the trigonometric and hyperbolic functions.

cosx =
1

2

(
eix + e−ix

)
←→ cos ix = coshx

sinx =
1

2i

(
eix − e−ix

)
←→ sin ix = i sinhx

coshx =
1

2

(
ex + e−x

)
←→ cosh ix = cosx

sinhx =
1

2

(
ex − e−x

)
←→ sinh ix = i sinx

There are also some useful "double-angle" identities that come from these results:

sin(x+ iy) = sinx cosh y + i cosx sinh y

cos(x+ iy) = cosx cosh y − i sinx sinh y

sinh(x+ iy) = sinhx cos y + i coshx sin y

cosh(x+ iy) = coshx cos y + i sinhx sin y

• Inverse Hyperbolic Functions - Evidently we have to de�ne the inverse of the hyper-
bolic functions for complex numbers.

sinh−1 z = log
(
z +

√
z2 + 1

)
cosh−1 z = log

(
z +

√
z2 − 1

)
tanh−1 z =

1

2
log

(
1 + z

1− z

)
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These can be calculated by setting up a quadratic equation in eiw and solving it. For
w = sin−1 z:

sinw = z

z =
1

2i

(
eiw − e−iw

)
0 = e2iw − 2izeiw − 1

eiw = iz ±
√

1− z2

→ sin−1 z = −i log
(
iz ±

√
1− z2

)
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1.5 Some Examples

Following are some examples of questions using the concepts outlined in this chapter. It
is advisable to work through the questions before looking at the solutions.

1. Find the locus of points in the Argand Diagram satisfying the equation

arg

(
z − 4

z − 1

)
=
π

2

We want to let z = z + iy and then simplify to �nd the Cartesian equivalent.

x+ iy − 4

x+ iy − 1
=

((x− 4) + iy)((x− 1)− iy)

(x− 1)2 + y2

=
x2 + y2 − 5x+ 4 + 3iy

(x− 1)2 + y2

However, we know that the real part of this fraction has to be zero for the argument
of z to be π/2. Hence:

x2 + y2 − 5x+ 4 = 0(
x− 5

2

)2

− 25

4
+ 4 + y2 = 0

→
(
x− 5

2

)2

+ y2 =
9

4

Thus, the locus of points is the semicircle above the real axis with centre (5/2, 0) and
radius 3/2. Note that this does not include the end points.

2. Show that

∞∑
n=0

2−n cosnθ =
1− 1

2 cos θ
5
4 − cos θ

We can solve this by considering the complex exponential representation of cosnθ.

∞∑
n=0

2−n cosnθ =
1

2

∞∑
n=0

1

2n

(
einθ + e−inθ

)
=

1

2

∞∑
n=0

(
1

2
eiθ
)n

+

(
1

2
e−iθ

)n

We can sum these two in�nite series:

1

2

∞∑
n=0

(
1

2
eiθ
)n

+

(
1

2
e−iθ

)n
=

1

2

(
1

1− 1
2e
iθ

+
1

1− 1
2e
−iθ

)

=
1

2

(
8− 2

(
eiθ + e−iθ

)
5− 2 (eiθ + e−iθ)

)

=
1

2

(
8− 4 cos θ

5− 4 cos θ

)
=

1− 1
2 cos θ

5
4 − cos θ

We have thus shown the identity.
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3. Prove that

n∑
k=1

(
n

k

)
sin 2kθ = 2n sinnθ cosn θ

Once again, we want to express the left-hand side as a series that we can more easily
sum. Consider the following expression:

n∑
k=1

(
n

k

)
ei2kθ =

(
n

1

)
ei2θ +

(
n

2

)
ei4θ + · · ·+

(
n

n

)
ei2nθ

=
(
ei2θ + 1

)n
− 1

=
(
eiθ
)n (

eiθ + e−iθ
)n
− 1

= einθ (2n cosn θ)− 1

= 2n cosn θ(cosnθ + i sinnθ)− 1

= i2n cosn θ sinnθ + 2n cosn θ cosnθ − 1

If we take the imaginary part of both sides, we obtain the identity as required.

4. Find the roots of the equation (z − 1)n + (z + 1)n = 0. Hence solve the equation

x3 + 15x2 + 15x+ 1 = 0.

(z − 1)n

(z + 1)n
= −1(

z − 1

z + 1

)n
= −1

z − 1

z + 1
= eiπ(2k+1)/n

for some integer k = 0, 1, . . . , n− 1. Let α = (2k + 1)/n.

z =
1 + eiαπ

1− eiαπ

=
ei
π
2
α
(
ei
π
2
α + e−i

π
2
α
)

ei
π
2
α
(
e−i

π
2
α − ei

π
2
α
)

→ z = i cot
( π

2n
(2k + 1)

)
In the original equation, let n = 6.

(z − 1)6 + (z + 1)6 = 0

2
(
z6 + 15z4 + 15z2 + 1

)
= 0

This means that z2 is a solution to x3 + 15x2 + 15x + 1 = 0 for n = 6. Hence the
roots of the polynomial are:

x = − cot2
( π

12

)
, − cot2

(π
4

)
, − cot2

(
5π

12

)
= −(2 +

√
3)2, −1, −(2−

√
3)2

= −(7 + 4
√

3), −1, −(7− 4
√

3)
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2. Di�erential Equations

This chapter aims to cover the basics of di�erential equation solving, including:

• Introduction and First Order ODE's

• Second Order ODE's

• Forced Oscillations and Resonance

• Simultaneous Di�erential Equations

Like with complex numbers, the mathematics of di�erential equations is mainly used as
a tool for solving physics problems. That being said, it is recommended that students do
a lot of practise on solving di�erential equations (DE's) so as to reach a stage where it
is e�ectively a "handle-turning" process, and more time can be devoted to digesting the
physical concepts at hand.
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2.1 Ordinary Di�erential Equations

An ordinary di�erential equation (or ODE) is an equation containing a function or func-
tions of one independent variable and its derivatives. For example, suppose that x is the
independent variable in the following equation:

dy

dx
= 1 + x2

This means that y is the dependent variable as it's value depends on x. The order of
the di�erential equation is equal to the highest derivative that appears in the equation; in
this case, the equation is of �rst order. As solving ODE's invariably involved integration
or trial solutions of some kind, always remember to include the arbitrary constant in the
solution; initial conditions can always be imposed later.

2.1.1 First Order ODE's

There are a variety of types of �rst order ODE's with di�erent methods of solving them,
as shown below:

• Separable - For two arbitrary functions f and g, these are of the form:

dy

dx
=
f(x)

g(y)
(2.1)

To solve this, we simply re-arrange and integrate with respect to each variable.

Solve the following equation subject to the condition that y = 0 at x = 0.

dy

dx
=

xey

1 + x2

It is evident that this equation is of the form in (2.1), and also because it conveniently
appears right after we have introduced the concept.

e−ydy =
x

1 + x2
dx∫

e−ydy =

∫
x

1 + x2
dx

−e−y =
1

2
log(1 + x2) + C1

Now we impose the boundary condition of y = 0 at x = 0:

−1 =
1

2
log(1) + C1

→ C1 = −1

e−y = −1

2
log(1 + x2) + 1

y = − log

(
1− 1

2
log(1 + x2)

)
Note that it is not always easy to express the solution in the form y = . . . , so just
simplify the equation as much as possible.
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• Almost Separable - For two arbitrary functions a and b, these are of the form:

dy

dx
= f(ax+ by) (2.2)

In order to solve these, we let u = ax+ by for a change of variables.

Solve the following equation

dy

dx
= 2(2x+ y)2

As above, let u = 2x+ y.

du

dx
= 2 +

dy

dx
du

dx
− 2 = 2u2

du

dx
= 2(u2 + 1)

du

u2 + 1
= 2dx

tan−1 u = 2x+ C2

2x+ y = tan(2x+ C2)

y = tan(2x+ C2)− 2x

• Homogeneous Equation - For an arbitrary function f , these are of the form:

dy

dx
= f

(y
x

)
(2.3)

Similarly to almost separable equations, we make the substitution that u = y/x.

Solve the following equation

dy

dx
+

2x

y
= 3

In this case, it is very clear that it is an homogeneous type equation, but be wary
that it is not always this obvious. Let u = y/x.

y = ux

dy

dx
= u+ x

du

dx

Substituting this into the equation:

u+ x
du

dx
+

2

u
= 3

x
du

dx
=

3u− 2− u2

u

= −(u− 1)(u− 2)

u
−u

(u− 1)(u− 2)
dv =

dx

x

14
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Integrating both sides:

log(1− u)− 2 log(2− u) = log x+ C3

log
(

1− y

x

)
− 2 log

(
2− y

x

)
= log x+ C3

Always remember to transform back to the original variables when stating the �nal
answer!

• Integrating Factor - This is probably the most useful technique, and is used to solve
equations of the form:

dy

dx
+ f(x) y = g(x) (2.4)

for arbitrary functions f and g. We can solve this by multiplying throughout the
whole equation by the integrating factor I:

I = e
∫
f(x)dx (2.5)

We then look for the 'reverse product rule' on the left-hand side of the equation.
Let's take a look at an example to see what this means.

Solve the following equation

x(x− 1)
dy

dx
+ y = x(x− 1)2

This is not originally in the form that we require to apply the integrating factor, and
so we need to �rst manipulate the equation.

x(x− 1)
dy

dx
+ y = x(x− 1)2

dy

dx
+

y

x(x− 1)
= (x− 1)

Now we want to compute I:∫
1

x(x− 1)
dx = log

(
1− x
x

)
→ I =

1− x
x

Multiplying throughout by I:(
1

x
− 1

)
dy

dx
− y

x2
= −(x− 1)2

x

d

dx

(
y

(1− x)

x

)
= −(x− 1)2

x

y
(1− x)

x
=

∫
2x− x2 − 1

x
dx

= 2x− x2

x
+ log x+ C4

y =
2x2

(1− x)
− x3

2(1− x)
− x

(1− x)
log x+

C4x

(1− x)

Always remember to add the constant of integration immediately after integrating.
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• Bernoulli Equation - These at �rst glance do not appear to be linear equations as
they are non-linear in the dependant variable, but can easily be solved with, you
guessed it, a substitution. For arbitrary functions f and g, these are of the form:

dy

dx
+ f(x) y = g(x) yn (2.6)

In this case, we let u = y1−n.

du

dx
= (1− n)y−n

dy

dx

→ du

dx
+ u(1− n)f(x) = g(x)(1− n)

We can then use the integrating factor method to solve the resultant equation.

Solve the following equation

dy

dx
+
y

x
= 2x

3
2 y

1
2

As stated above, let u = y1/2.

du

dx
=

1

2
y−1/2

dy

dx
dy

dx
= 2y1/2

du

dx
du

dx
+

u

2x
= x3/2

Now we make use of the integrating factor technique.

I = e
∫

1
2x
dx

= e
1
2
log x

= x1/2

Multiplying throughout by I:

x1/2
du

dx
+
u

2
x−1/2 = x2

d

dx

(
ux1/2

)
= x2

ux1/2 =
x3

3
+ C5

y =

(
x5/2

3
+

C5

x5/2

)2

16
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• Exact Equations - For some arbitrary functions p and q, these are of the form.

dy

dx
= −p(x, y)

q(x, y)
(2.7)

These can be solved if and only if

∂q

∂x
=
∂p

∂y
(2.8)

This is in fact the condition for the equation to be an exact di�erential.

Solve the following equation

dy

dx
= −6x+ y + y2

x+ 2xy

Looking at (2.7), it is clear that:

∂q

∂x
=
∂p

∂y
= 1 + 2y

Hence the equation is exact. Writing

df =
df

dx
dx+

df

dy
dy = (6x+ y + y2)dx+ (x+ 2xY + dy = 0

So, by inspection, the di�erential equation can be integrated to give

xy + xy2 + 3x2 = C5

This is equal to a constant as the right-hand side of the di�erential equation is equal
to zero, which integrates to give a constant. This makes more sense when regarded
in the like of conservative forces and scalar potentials (see CP4 notes).

These are the six main types of �rst order di�erential equations that we will encounter.
Always remember that if an equation does not initially appear in one of these forms, it
will most likely be some re-arrangement of one of them.
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2.2 Second Order ODE's

Second order di�erential equations are so called as they include the second derivative of
the dependant variable with respect to the independent variable. They are of the form:

f(x)
d2y

dx2
+ g(x)

dy

dx
+ h(x) y = r(x) (2.9)

for barbarity functions f , g, h and r. If r(x) = 0, the equation is homogeneous, where as
if r(x) 6= 0, then it is inhomogeneous.

The fact that these equations are linear in the dependent variable and its derivatives is
very important. This is because it allows us to use the principle of superposition; for
an equation that has solutions y1(x) and y2(x), any linear combination of these two is
also a solution. This means that to solve an inhomogeneous equation, we can solve the
homogeneous and inhomogeneous parts separately, and their sum will be a solution to the
entire equation. Note that in many cases there is not a unique solution, but instead a set
of solutions to within an arbitrary set of constants.

2.2.1 Solving the Homogeneous Equation

To solve this, we want to use the substitution

y = Cenx (2.10)

This will generate an axillary equation in n that can then be solved to �nd the general
solution. Depending on the magnitude of n, this may lead to one of three di�erent sets of
solution behaviours. For the purposes of this subsection, we will assume that the equation
is of the form

a
d2y

dx2
+ b

dy

dx
+ c y = r(x)

for constants a, b and c. The auxiliary equation is thus:

an2 + bn+ c = 0

→ n = − b

2a
±

√(
b

2a

)2

− c

a

= − b

2a
± α

The three solution sets are as follows:

1. Over-damped - This occurs when the solutions to n are real; for b2 > 4ac. These
are exponentially decaying solutions that usually disappear as x → ∞, and are the
result of strong damping.

y = e−bx/2a
(
c1e

αx + c2e
−αx) (2.11)
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Figure 2.1: An example of an over-damped solution for y

2. Critical Damping - This occurs when the solutions to n are real and coincident; for
b2 = 4ac. This includes a linear term that is also modulated by the exponential
decay amplitude.

y = e−bx/2a(c1x+ c2) (2.12)

Figure 2.2: An example of a critically damped solution for y

3. Under-damping - This occurs when the solutions to n are complex; for b2 < 4ac. The
resultant solution will include sinusoidal/oscillatory terms in the decay.

y = e−bx/2a(c1 cos(iαx) + c2 sin(iαx)) (2.13)

Figure 2.3: An example of an under-damped solution for y
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2.2.2 Solving the Inhomogeneous Equation

Solving for the inhomogeneous solution is a little more of an 'art-form' than in the case of
the homogeneous solution. In general, we have to �nd a trail solution that 'corresponds'
to r(x). For example, if r(x) = cosx, then we would substitute the solution y = c1 cosx+
c2 sinx into the homogeneous part of the equation and equate coe�cients to �nd the �nal
solution. We can think of the trial solution as the most general form of the speci�c r(x)
given. Some trial solutions include:

r(x) Trial Solution

A polynomial of degree n A general polynomial of degree n

Sum of sin ax and cos ax c1 cos ax+ c2 sin ax

Sum of sinh ax and cosh ax c1e
ax + c2e

−ax

eax c1e
ax

If r(x) is a sum of two such function types, then the trial solution should be a sum of those
functions. If it is a product, then the trial solution should be a product (though pray it
isn't as this can get quite algebraically intensive!).

Note that the solution to the homogeneous equation cannot appear in a solution to the
inhomogeneous equation. For example, if eax appears in the solution to y hom, then
in our trial solution for the inhomogeneous function r(x) = cosh ax, we have to use
y trial = c1xe

ax + c2e
−ax. Otherwise, we would just get a repeated solution.

Let us consider the following example. A mass m is constrained to move in a straight line

and is attached to a spring of length λm and a dashpot which produces a retarding force

−αmv, where v is the velocity of the mass. Find the steady state displacement of the mass

when an amplitude modulated periodic force Am cos pt sinωt with p � ω and α � ω is

applied to it.

Show that for ω = λ the displacement of the amplitude modulated wave is approximately

given by

−Acosωt sin(pt+ φ)√
4ω2p2 + α2ω2

where cosφ =
2ωp√

4ω2p2 + α2ω2

At �rst glance, this looks like a very nasty question....and to tell you the truth, it really is.
However, we recommend that you give it a go �rst, and come back here for hints if needed.

We �rst need to �nd the equation of motion of the mass, as this will give us the di�erential
equation that we need to solve. By Newton's Second Law:∑

F = mẍ

mẍ = −λ2mx− αmv +Am cos pt sinωt

→ d2x

dt2
+ α

dx

dt
+ λ2x = A cos pt sinωt

As we are asked for the steady state displacement of the mass, we only have to �nd the
solution to the inhomogeneous equation, as this will be the only remaining motion as
t→∞. Consider

A cos pt sinωt =
A

2
[sin(p+ ω)t− sin(p− ω)t]

= Im

(
A

2
ei(p+ω)t − A

2
ei(p−ω)t

)

20



Toby Adkins CP2

Thus, we want to trial solution to be x = c1e
i(p+ω)t + c2e

i(p−ω)t. Substituting this in, and
going through some algebra, we obtain:

c1e
i(p+ω)t

[
−(p+ ω)2 + αi(p+ ω) + λ2

]
+ c2e

i(p−ω)t [−(p− ω)2 + αi(p− ω) + λ2
]

=
A

2
ei(p+ω)t − A

2
ei(p−ω)t

Equating coe�cients:

A

2
= c1(λ

2 − (p+ ω)2 + iα(p+ ω))

−A
2

= c2(λ
2 − (p− ω)2 + iα(p− ω))

c1 =
A

2(λ2 − (p+ ω)2 + iα(p+ ω))

c2 =
A

2(λ2 − (p− ω)2 + iα(p− ω))

Now, we can write c1 and c2 in complex exponential for that allows us to simplify the
solutions somewhat.

Let r1e
iθ1 = λ2 − (p+ ω)2 + iα(p+ ω)

r1 =
√
α2(p+ ω)2 + (λ2 − (p+ ω)2)2

θ1 = tan−1
(

α(p+ ω)

λ2 − (p+ ω)2

)
Let r2e

iθ2 = λ2 − (p+ ω)2 + iα(p+ ω)

r1 =
√
α2(p− ω)2 + (λ2 − (p− ω)2)2

θ1 = tan−1
(

α(p− ω)

λ2 − (p− ω)2

)
Thus our solution to the steady-state displacement is the imaginary part of the following:

x = Im

[
A

2

(
ei((p+ω)t−θ1)

r1
− ei((p−ω)t−θ2)

r2

)]
(2.14)

Told you it was messy! We now have to apply the condition that both p and α are negligible
in comparison to ω. In this limit, we �nd that

r1 = r2 ≈
√
α2ω2 + (λ2 − ω2)2

θ1 = −θ2 ≈ tan−1
(

αω

λ2 − ω2

)
Substituting this back into (2.14), with a little simpli�cation, we obtain:

x(t) =
A sin(ωt− θ1)√
α2ω2 + (λ2 − ω2)2

Now we are asked the case with ω = λ. We need to apply this condition before the
approximations. Under this condition:

r1 =
√
α2(p+ ω)2 + (2ωp+ p2)2

r2 =
√
α2(p+ ω)2 + (2ωp− p2)2

θ1 = tan−1
(
−α(p+ ω)

p(2ω + p)

)
θ2 = tan−1

(
α(p− ω)

p(2ω − p)

)
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Now let us assume p� ω and α� ω:

r1 = r2 ≈
√

4ω2p2 + α2ω2

θ1 = θ2 ≈ tan−1
(
− αω

2ωp

)
= φ

We now want to �nd cosφ. Using the quadrant diagram below

Figure 2.4: A quadrant diagram for an acute angle φ

we �nd that

cosφ =
2ωp√

4ω2p2 + α2ω2

Simplifying the expression for x based on these calculations:

x = −A
2

[
sin((p+ ω)t− θ1)

r1
+

sin((p− ω)t− θ2)
r2

]
= −A

r1

[
sin

(
(p+ ω)t− φ+ (p− ω)t− φ

2

)
· cos

(
(p+ ω)t− φ− (p− ω)t+ φ

2

)]
→ x = −Acosωt sin(pt+ φ)√

4ω2p2 + α2ω2

As with all questions, it helps to be very careful when making substitutions or approxima-
tions in order to preserve accuracy.

2.2.3 Euler-Cauchy Equation

Euler-Cauchy equations are of the form

ax2
dy

dx2
+ bx

dy

dx
+ cy = r(x) (2.15)
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for constants a, b and c. This can be solved by letting x = et to give a change of variables
to an equation that we can solve by conventional techniques.

dy

dx
=
dt

dx

dy

dt

=
1

et
dy

dt
d2y

dx2
=

d

dx

(
dy

dt

dt

dx

)
=

d

dt

(
dy

dx

)
dt

dx

=
d

dt

(
1

et
dy

dt

)
1

et

=
1

e2t

(
d2y

dt2
− dy

dt

)
Thus, the equation becomes

a

(
d2y

dt2
− dy

dt

)
+ b

dy

dt
+ cy = r(et)

a
d2y

dt2
+ (b− a)

dy

dt
+ cy = r(et)

which we can solve for y(t) and then transform back to y(x).
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2.3 Forced Oscillations and Resonance

We jumped the gun slightly with the example in Section (2.2.2) as it actually uses some of
the ideas covered in this section. However, now that you are familiar with the process of
solving these types of driven equations, full derivations will not be outlined. If confused,
refer to the aforementioned example, as it includes all the techniques to derive most of the
results in this section.

Forced or driven oscillators typically have equations of motion of the form

d2x

dt2
+ γ

dx

dt
+ ωo

2x =
F

m
eiωt (2.16)

where γ is the damping constant, ωo is the natural frequency (that results from a static
force, letting ẍ = ẋ = 0) and the right-hand side is the the sinusoidal driving force.

2.3.1 Solution

The transient solution ism given by �nding the solution to the homogeneous equation. For
γ 6= 0, this will have an exponential decay constant out the front, meaning it will decay to
e�ectively zero over large time periods. If γ = 0, then we actually have simple harmonic
motion.

The steady state solution is the solution to the inhomogeneous equation. In a similar way
to in the example in Section (2.2.2), this can be done by letting y = Ceiωt and simplifying
using complex exponential algebra. This leads to the solution of

x(t) =
Fei(ωt−φ)

m
√

(ωo2 − ω2)2 + γ2ω2
(2.17)

where φ = tan−1
(

γω

ωo2 − ω2

)
(2.18)

The resonant frequency for the displacement is found by di�erentiating the denominator
and �nding it's minimum value.

d

dω

[
(ωo

2 − ω2)2 + γ2ω2
]∣∣∣
ω=ωR

= 0

−4ω(ωo
2 − ωR2) + 2γ2ω = 0

→ ωR
2 = ωo

2 − γ2

2
(2.19)

The resonant frequency for the velocity can be found by dividing through by ω, and then
inspecting the values that minimise the denominator.

ẋ =
ωFei(ωt−φ)

m
√

(ωo2 − ω2)2 + γ2ω2

=
Fei(ωt−φ)

m

√
(ωo2/ω2 − 1)2 + γ2

Evidently, it is clear that ω = ωo for velocity resonance.
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2.3.2 Power at Resonance

The power of the oscillator, assuming perfect coupling, is given by the time average of the
instantaneous power at resonance.

Power = Force × Velocity

P =
−Fωm√

(ωo2 − ω2)2 + γ2ω2
sin(ωt− φ) cosωt

We want the instantaneous power, and so we need to �nd the time average of the sinusoidal
terms.

sin(ωt− φ) cosωt = (sinωt cosφ− cosωt sinφ) cosωt

= sinωt cosωt cosφ− cos2 ωt sinφ

Averaging over a period:

sinωt cosωt =
ω

2π

∫ 2π
ω

0
sin 2ωt dt

= 0

cos2 ωt =
ω

2π

∫ 2π
ω

0
cos2 ωt dt

=
1

2

Hence, we arrive at the equation

〈P 〉 =
Fωm

2
√

(ωo2 − ω2)2 + γ2ω2
sinφ (2.20)

=
Fmω2γ

2((ωo2 − ω2)2 + γ2ω2)
(2.21)

Near resonance, ω ≈ ωo, meaning that the average power becomes:

〈P 〉Resonance =
F 2

2mγ

2.3.3 Quality Factor

The Q factor is a measure of the 'quality' of a resonant system. In general, a higher Q
corresponds to a:

� Smaller resonant peak (see next section)

� Greater amplitude of oscillation

� Smaller decay constant, meaning that oscillations take longer to decay

� Good resonance

There are multiple de�nitions of Q factor that we can use when calculating it. These
include:

Q = 2π · Energy Stored

Mean Power per Cycle

= 2π · Amplitude at Resonance

Max Displacement under static force

=
2π

Fractional Power Lost per Cycle
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The last of these can be easily calculated by Taylor expanding the exponential term that
appears in the fractional power lost per cycle, assuming that the damping is small. Which
de�nition used to calculate the Q factor will depend largely on the system at hand, espe-
cially whether it is forced or not.

In the case of the oscillator outlined at the start of this section, the Q factor is:

Q =
ωo
γ

2.3.4 Width of Resonance

The width of the resonant peak corresponds to the quality of the resonator; the higher the
Q factor, the smaller the resonant peak. Let ωR be the resonant frequency.

Figure 2.5: Finding the width of the resonant peak

The width of the resonance is de�ned as:

∆ω = ω2 − ω1

We thus want to �nd an expression for ω1,2 in order to evaluate ∆ω. From (2.18):

A(ω1) =
1√
2
A(ωR)

F

m

√
(ωo2 − ω1

2)2 + γ2ω1
2

=
F

√
2m

√
(ωo2 − ω1

2)2 + γ2ω1
2(

ωo
2 − ω1

2
)2

+ γ2ω1
2 = 2

[(
ωo

2 − ωR2
)2

+ γ2ωR
2
]

Recalling (2.19):

(
ωo

2 − ω1
2
)2

+ γ2ω1
2 = 2γ2ωo

2 − γ4

2

This can be solved as a quadratic in ω1
2, but the answer is not particularly enlightening.

It it much easier to expand the equation by expressing ω1 in terms of a relevant parameter.
γ is a good choice as the damping will be small for a sharp resonance, and it has the right
dimensions. Thus let

ω1 = ωo + aγ +O(γ2)
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for some constant a. Substitute this in and ignore terms of O(γ2) and above:

(
ωo

2 − ω1
2
)2

+ γ2ω1
2 = 2γ2ωo

2 − γ4

2
(ωo − ω1)

2(ωo + ω1)
2 + γ2ω1

2 = 2γ2ωo
2

4a2γ2ωo
2 + γ2ωo

2 = 2γ2ωo
2

Equating coe�cients, we �nd that a = ±1/2. This means that:

ω1 = ωo −
γ

2

ω2 = ωo +
γ

2

Thus, the width of the resonance is:
∆ω = γ (2.22)

2.3.5 Phases

Evidently, there is a phase di�erence φ between the driving force and the response of the
oscillator.

• Displacement Response: φx = tan−1
(

γω
ωo2−ω2

)

Figure 2.6: Displacement phase as a function of ω

• Velocity Response: φv = tan−1
(

γω
ωo2−ω2

)
− π/2

Figure 2.7: Velocity phase as a function of ω
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2.4 Simultaneous Di�erential Equations

Simultaneous or coupled di�erential equations describe systems where there is no de�nitive
dependent variable that can be isolated. In this case, we have to solve the system of equa-
tions. Note that we assume that the solutions to both variables will both 'vary together';
i.e they will have the same exponential terms. We can do this by following the following
set of steps:

� Substitute the trial solutions x1 = C1e
nt and x2 = C2e

nt

� Set the determinant of the resultant coe�cient matrix to zero to �nd a solution to
the homogeneous equation

� Find the amplitude ratios between the coe�cients. It is useful to apply boundary
conditions after this step to eliminate unnecessary algebra

� For the inhomogeneous solution, substitute the trial solutions into both equations
and solve for coe�cients as normal

As always, let's have a look at an example.

Solve the di�erential equations

2
d2y

dx2
− 3

dy

dx
+ 2

dz

dx
+ 3y + z = e2x

d2y

dx2
− 3

dy

dx
+
dz

dx
+ 2y − z = 0

Is it possible to have a solution to these equations for which y = z = 0 when x = 0?

Let y = Aenx and z = Benx. Taking linear combinations of the equations, we obtain the
following coe�cient equations

A(n2 + 1) +B(n+ 2) = 0

A(n− 1)(n− 2) +B(n− 1) = 0

Writing this as a matrix system and taking the determinant of the coe�cient matrix:(
n2 + 1 n+ 2

(n− 1)(n− 2) n− 1

)(
A
B

)
= 0∣∣∣∣ n2 + 1 n+ 2

(n− 1)(n− 2) n− 1

∣∣∣∣ !
= 0

(n2 + 1)(n− 1)− (n+ 1)(n− 2)(n− 1) = 0

5n− 5 = 0

→ n = 1

When n = 1,

A(2) +B(3) = 0

B = −2

3
A

Hence, the homogeneous part of the solution is

y′ = αex

z′ = −2

3
αex
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for some constant α. For the inhomogeneous solution, we want to let y = Ce2x and
z = De2x.

8C − 6C + 3C + 4D + 2D = 1

5C + 6D = 1

4C − 6C + 2D + 2C −D = 0

D = 0

C =
1

5

Hence, the �nal solutions are:

y = αex +
1

5
e2x

z = −2

3
αex

It is evidently not possible to have solutions to this equation that satis�es y = z = 0 for
x = 0, as z only takes non-zero values.
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3. Linear Algebra

This chapter aims to cover the fundamental basics of linear algebra, including:

• Index Notation

• Vector Spaces

• Scalar and Vector Products

• Cardinal Geometry

• Matrices

• Determinants

• Matrix Inverse

• Eigenvalues, Eigenvectors and Quadratic Forms

• Systems of Linear Equations

• Matrix Types

Linear Algebra is in fact a very massive topic that goes well beyond the scope of this course.
As such, this text will attempt to provide some of the theory underlying the more practical
applications of linear algebra, but for a more full/in-depth explanation refer to Andre
Lukas' type-set notes. Furthermore, it will not provide proofs of the more mathematically
'fundamental' concepts. Think of this as more of a distillation of the commonly used
concepts and techniques. Throughout this chapter, we will use the superscript v̂ to denote
a unit vector; that is

v̂ =
v

|v|
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3.1 Index Notation

Index notation is an incredibly useful tool when it comes to linear algebra as it is a short-
hand way of notating vector and matrix operations based on their elements. For example,
suppose we have an n-dimensional row vector v = (v1, v2, v3, . . . , vn). Then in index nota-
tion, this becomes vi, where the subscript i denotes all of these elements within the vector;
a row or column vector only has a single index as we only need one number to specify a
unique element in the vector. For a matrix A, then two indices are needed as you need to
specify column position as well as row position; Aij .

This brings with it some important properties and ideas. For example, if we have two
vectors v and u, which we will write in index notation as vi and uj , then the scalar product
of these two vectors is only de�ned if i = j. This makes sense, as the vectors would have
to be the same size for one to be able to calculate the product; else, what do you do with
the entries left over when you have calculated all the other corresponding ones?

At this stage, we need to introduce two important entities that we use in index notation.
There are as follows:

• Kronecker Delta - This is de�ned as:

δij =

{
1, if i = j

0, if i 6= j

You can think of this as meaning "switches i to j" or vice versa; when multiplying a
vector by this, we can simply switch the index.

• Levi-Cevita Tensor - This is de�ned as:

εi1,i2,...,in =


1, if (i1, i2, . . . , in) is an even permeatation of (1, 2, . . . , n)

−1, if (i1, i2, . . . , in) is an odd permeatation of (1, 2, . . . , n)

0, otherwise

Here we have de�ned the n-dimensional case; in this chapter, we will mostly work
with the three dimensional case εijk.

We can combine both of these entities to give us an 'index notation identity' that:

εijkεkmn = δimδjn − δjmδin (3.1)

As you are often told with identities such as this, if you stare at it long enough, it will
make sense as to why it is what it is!

How is this useful? Well, we can use it to prove and simplify many vector operations and
identities. For example, for two vectors v and u, their scalar product is de�ned by

v · u = viui

while the vector product is de�ned as

v × u = εijkvjuk

Now, don't worry if you don't know what these operations actually are; we will de�ne them
fully later on in Section (3.3). For the meantime, let us use these 'index de�nitions' to
prove some identities. In all of these cases, it is very important to keep track of the indices
used. At any one time, there should only really be one "free" index that the summation
takes place over.
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• c · (a× b) = −c · (b× a)

c · (a× b) = ci(a× b)i
= ciεijkajbk

= ciεikj(−bk)aj
= −ci(b× a)i

= −c · (b× a)

Here we have used the anti-cyclic property of the Levi-Civita tensor that introduces
the minus sign when we change the order of the vector product (incidentally, this is
one of the fundamental properties of the vector product due to its de�nition).

• a× (b× c) = b (c · a)− c (b · a)

a× (b× c) = εijkaj(b× c)k
= εijkajεknmbmcn

= (δimδjn − δinδjm)ajbmcn

= ajcjbi − bjciaj
= b (c · a)− c (b · a)

We have used (3.1). Note how we have switched the indices on all the vectors when
multiplying through by the Kronecker-Delta.

• (a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c)

(a× b) · (c× d) = (a× b)k(c× d)k

= εijkajbiεknmcndm

= εijkεknmajbicndm

= (δimδjn − δinδjm)ajbicndm

= ancnbmdm − ambncndm
= (a · c) (b · d)− (a · d) (b · c)

We can prove a lot of identities such as these much more easily than otherwise using
index notation, and so it is de�nitely worth becoming quite familiar with it's use and
manipulations. We will be using it sporadically throughout this chapter when it is required;
as always, if confused, come back to this section to refresh your memory.
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3.2 Vector Space

A vector space V over F is a set with two operations:

1. Vector Addition - Adding vectors component by component: u+ v = ui + vi

2. Scalar Multiplication - Multiplying the entire vector by a scalar: αu = αui

The way to prove the existence of a vector space or sub-vector space is that it is closed
under these two operations. This means that any linear combination of vectors is also in

the vector space.

3.2.1 Span and Linear Independence

A linear combination of two vectors is the outcome of performing any linear operation
(scalar multiplication and addition) on those two vectors. For example, αu + βv is an
example of a linear combination of the vectors u and v.

The span of a vector or sub-vector space is the set of all linear combinations of those

vectors. The span of any vectors in a vector space itself forms a sub-vector space, as it is
another vector set by de�nition:

Span(v1, . . . , vk) =

{
k∑
i=0

αivi
∣∣ α ∈ F} (3.2)

where αi are scalars. The vectors v1, . . . , vk are called linearly independent if and only if
the only valid solution to

k∑
i=0

αivi = 0

is if all αi's are zero. They are called linearly dependent if there is one non-trivial solution
to this equation. Thus, to �nd whether a set of vectors are linearly dependent or not, write
them as sum linear combination and attempt to �nd a solution.

Are v1 = (1, 0, 1), v2 = (2, 3, 1), v3 = (1, 6,−1) linearly independent?

α1v1 + α2v2 + α3v3 =

α1 + 2α2 + α3

3α2 + 6α3

α1 + α2 − α3

 !
= 0

By inspection, we can see that a possible solution is α1 = 3, α2 = −2 and α3 = 1.
Thus means that the three vectors are not linearly independent; the are in fact linearly
dependent!

3.2.2 Basis and Dimension

The vectors v1, . . . , vk form a basis of V if and only if:

1. v1, . . . , vk are linearly independent

2. V = Span(v1, . . . , vk)
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These two conditions essentially mean that we require that every vector in the vector space

can be written as a linear combination of the basis vectors. Suppose that a non-zero vector
v can be written as two di�erent linear combinations of the basis vectors ui:

v =
n∑
i=0

αiui =
n∑
i=0

βiui

n∑
i=0

(αi − βi)ui = 0

αi − βi = 0

→ αi = βi

We have just in fact shown that the linear combination of basis vectors is actually unique.

If v1, . . . , vk is a basis of V, then we de�ne the dimension of V as the 'size' of the set of
basis vectors

dim(V) = k

For two vector spaces V and W, we can say that

dim(V +W) = dim(V) + dim(W)− dim(V ∩W) (3.3)

This is an intuitively obvious result, but can be proven by considering generalised vectors
in each vector space.

Suppose that u1, . . . , un are the basis for the sub-vector space V∩W. Then dim(V∩W) = n.
Suppose that there are further vectors v1, . . . , vj that form a basis of V. Then dim(V) =
n + j as all the elements of V ∩ W must be contained within V. Suppose that there are
further vectors w1, . . . , wk that form a basis of W. Then dim(W) = n+ k by similar logic.

The sub-vector space V +W contains all the elements of V and W, as well as their linear
combinations. However, any of these combinations can be made out of a linear combina-
tion of the basis vectors of V or W or both.

Consider the vectors V 1 and W 1 de�ned by:

V 1 = α1v1 + α2v2 + . . .

W 1 = β1w1 + β2w2 + . . .

→ V 1 +W 1 = (α1v1 + α2v2 + . . . ) + (β1w1 + β2w2 + . . . )

It thus becomes clear that V 1 +W 1 is formed from a linear combination of the bases of V
and W. This means that V +W has basis vectors

u1, . . . , un, v1, . . . , vj , w1, . . . , wk

It follows that dim(V+W) = n+k+j = (n+k)+(n+j)−n = dim(V)+dim(W)−dim(V∩W)
as required.
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3.3 Scalar and Vector Products

These are the two most important vector operations covered in this chapter. Most students
who have done a small amount of linear algebra should already be familiar with these. Note
that all de�nitions will be de�ned for the three dimensional case.

3.3.1 Scalar Product

The scalar product, also known as the dot product, is de�ned as:

a · b = aibi = |a||b| cos θ = 〈a, b〉 (3.4)

where θ is the acute angle between the vectors. This will generate a scalar quantity from
two vectors. We say that two vectors are orthogonal or perpendicular if a·b = 0. Generally,
a basis will be orthogonal, or else the vectors will not be linearly independent.

The scalar product projects the length of one vector onto another.

Figure 3.1: The projection property of the scalar product

The component along b is given by a · b̂, where as the vector projection along b is given by
(a · b̂) b̂ ; the magnitude of the component multiplied given the direction of b. We can use
this property when writing a vector in terms of a basis. Suppose that e1, e2 and e3 are the
three orthonormal vectors for some vector space. Then

v = α1e1 + α2e2 + α3e3

for constants αi. We can thus �nd these constants by αi = v · ei, as this gives (in a sense)
the 'amount' of the vector v in each of the unit directions.

3.3.2 Vector Product

The vector product, also known as the cross product, is de�ned as:

a× b = εijkajbk = |a||b| sin θ (3.5)

where θ is the acute angle between the vectors. This will generate a vector that is per-

pendicular to both of the vectors involved in the cross product. Due to the nature of it's
de�nition using the Levi-Civita tensor, it will reverse sign if the order of the operation is
changed: a× b = −b× a.

We can compute the result of the vector product by computing the following determinant

a× b =

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
Do not worry if you don't know what a determinant is yet; this is coming up in Section
(3.7).
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3.3.3 Triple Scalar Product

The triple scalar product involves both the scalar and vector products, and is de�ned as

〈a, b, a〉 = a · (b× c) = εijkaibjck (3.6)

It's properties follow from the properties of the Levi-Civita Tensor:

� Linear in each argument

� Totally Antisymmetric

� Vanishes if two or more arguments are the same

If 〈a, b, a〉 6= 0, then the three vectors a, b and c are linearly independent. This is because
the cross product a× b generates a vector perpendicular to both b and c. If the subsequent
dot product with a is non-zero, it means that a does not lie in the same plane as b and c,
and so the three vectors are linearly independent.

The triple scalar product also has some geometrical uses. For a �gure de�ned by vectors
u, v and w:

� Volume of Parallelepiped = |〈u, v, w〉|

� Volume of Tetrahedron = 1
3! | 〈u, v, w〉 |
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3.4 Cardinal Geometry

This section covers the techniques required to handle most of the geometrical questions
that will be asked in this course. They will becomes easier to remember and then apply
as one gets more familiar with the way the vector operations map to operations in three
dimensional space.

3.4.1 Triangles

Suppose that a triangle in two dimensions has sides that are de�ned by the three vectors
a, b and c. As these vectors must form a closed loop

a+ b+ c = 0

a× (a+ b+ c) = 0

a× b+ a× c = 0

→ |a× b| = |b× c| = |a× c|

The area of the triangle is given by

Area =
1

2
|a× b| (3.7)

3.4.2 Lines in Three Dimensions

In two dimensions, we can de�ne a line by it's gradient and some point that it passes
through. We can do a similar thing in three dimensions, except we de�ne the direction of
the line, p and a point through which it passes p. Parametrically, we can express thus as:

r(t) = p+ tq (3.8)

This de�nes all the points on the line because as we vary the parameter t, the point speci�ed
moves along the direction of q with the constraint that at some point (t = 0) it must pass
throught p. This form can also be rearranged to express the line in terms of t:

x− px
qx

=
y − py
qy

=
z − pz
qz

(3.9)

We can �nd q by writing down two points on the line, or a line parallel to it, and taking
their di�erence.

3.4.3 Planes

A plane consists of the locus of points that satisfy the condition that the line joining said
points and another chosen point is perpendicular to some other vector. Thus, to de�ne a
plane, we just need a point and a normal vector that is perpendicular to the surface of the
plane. This means the equation of a plane passing through a with normal vector n is

(r − a) n = 0→ r · n = d (3.10)

We can also write this in 'expanded' form. Suppose that n = (a, b, c). Then, the equation
of the plane becomes

ax+ by + cz = d (3.11)

We �nd n by �nding two lines that lie in the plane (requiring three points at minimum)
and taking their vector product as this generates a vector normal to both.
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3.4.4 Geometric Techniques

This subsection is basically just a list of the manipulations that one should be familiar
with when it comes to the geometry of lines and planes in three dimensions.

• Shortest Distance from a line to a point - Evidently, the shortest distance from a line
to a point is in the direction perpendicular to the line. This means that we have to
take the vector product with the unit vector q̂ for the line. For a general point p

o
:

d min =
|(p− p

o
)× q|
|q|

(3.12)

• Shortest Distance between two lines - Similarly, the shortest distance between two
lines is the distance perpendicular to both. This will be in the direction of q

1
× q

2
for the two lines (the cross product of the direction vectors). Thus, we just want �nd
the projection of some line joining the two lines in this direction. Hence, the shortest
distance is given by:

d min =
|(p

1
− p

2
) · (q

1
× q

2
)|

|q
1
× q

2
|

(3.13)

• Shortest Distance to a point from a plane - Again, this will be in the direction
perpendicular to the surface of the plane, and so we have to �nd the projection of a
line joining the given point p

o
to a point in the plane a onto the normal to the plane

n.
d min = (a− p

o
) n̂ (3.14)

• Point of Intersection between a plane and a line - If it is a numerical question, we
can simply express x, y, and z in parametric form using the equation of the line
and substitute these into the equation for the plane. Solve for the free parameter (t),
and substitute this back into the equation for the line to �nd the point of intersection.

Suppose that a line is de�ned by r = a+ t b, and a plane by (r − c) d. Substituting
the equation of the line into the equation of the plane:

(a− c+ t b) · d = 0

t = −d (a− c)
b · d

This is assuming that b ·d 6= 0, as otherwise the line and the plane would be parallel.
This is a unique solution for t, meaning that there is a unique point of intersection
of

p =
a (b · d)− d · (a− c)

b · d
(3.15)

• Line of Intersection between two planes - Assuming that two planes intersect, they
will intersect along a line. The cross product of the normals to the plane n1 and n2
will give the direction of this line, and then one just has to �nd a point that lies on
the intersection in order to have the equation of the line.
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3.5 The Scalar Product

The scalar product between to 'entities' A and B is notated as 〈A,B〉. The reason why we
say entities here is because the scalar product can be de�ned for more than just vectors or
matrices. It must satisfy four conditions for it to be a scalar product:

〈A,B〉 = 〈B,A〉 (3.16)

〈A, k B〉 = k 〈A,B〉 (3.17)

〈A,B + C〉 = 〈A,B〉+ 〈A,C〉 (3.18)

〈A,A〉 > 0 (3.19)

If these properties are not satis�ed, then we do not have ourselves a scalar product!

Does the expression

〈f, g〉 =

∫ ∞
−∞

e−x
2
f(x)g(x)

de�ne a scalar product? Consider the polynomial

pa(x) =
ao + a1x+ a2x

2 + · · ·+ aax
a

na

Determine a general expression for na such that the polynomials pa are normalised to one,

so 〈pa, pa〉 = 1.

First, we need to check whether it satis�es the conditions of the scalar product.

• Commutativity

〈g, f〉 =

∫ ∞
−∞

e−x
2
g(x)f(x)

=

∫ ∞
−∞

e−x
2
f(x)g(x)

= 〈f, g〉

• Linearity - Let f(x) = αa(x) + βb(x):

〈αa+ βb, g〉 =

∫ ∞
−∞

e−x
2
g(x)(αa(x) + βb(x))

= α

∫ ∞
−∞

e−x
2
g(x)a(x) + β

∫ ∞
−∞

e−x
2
g(x)b(x)

= α 〈a, g〉+ β 〈b, g〉

• Real

〈f, f〉 =

∫ ∞
−∞

e−x
2

(f(x))2

> 0

This is because the integrand, if non-zero, is positive de�nitive.
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Thus, the expression does de�ne a scalar product. Now for the next part:

〈pa, pa〉 =
1

na2

∫ ∞
−∞

e−x
2
(ao + a1x+ a2x

2 + · · ·+ aax
a)2

=
1

na2

∫ ∞
−∞

e−x
2

a∑
i,j=1

aix
iajx

j

=
1

na2

∫ ∞
−∞

e−x
2

a∑
i,j=1

aiajx
i+j

Evidently, any terms where i+ j is odd will disappear, and hence let i+ j = n for even n.

In =

∫ ∞
−∞

e−x
2
xndx

= −1

2

([
xn−1e−x

2
]∞
−∞
−
∫ ∞
−∞

(n− 1)xn−2e−x
2
dx

)
=

1

2
(n− 1)

∫ ∞
−∞

xn−2e−x
2
dx

=

(
1

2

)n
(n− 1)!!

∫ ∞
−∞

e−x
2
dx

→ In =

(
1

2

)n
(n− 1)!!

√
π

Thus

〈pa, pa〉 =
1

na2

a∑
i,j=1

aiaj

(
1

2

)n
(n− 1)!!

√
π

But we want to normalise.

→ na =

√√√√ a∑
i,j=1

aiaj(i+ j − 1)!!
√
π

(
1

2

)i+j
This is the value of na required in order for 〈pa, pa〉 = 1.
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3.6 Matrices

A matrix can be thought of as an array of elements, which can be integers, imaginary
numbers or even operators. If we say a matrix A is an n by m matrix, this means that the
matrix has n rows and m columns. We generally notate this as n×m.

A =

a11 . . . a1m
...

. . .
...

an1 . . . anm


As can be seen in the matrix above, we refer to individual matrix elements by specifying
their row and column numbers. Thus, like with vectors in index notation, we write a ma-
trix A as Amn.

At this stage, let us introduce an important matrix identity; the idea of the unit matrix I.

I =


1 0 . . . 0

0
. . . . .

.
0

0 . .
. . . . 0

0 . . . . . . 1

 (3.20)

That is, it is the matrix with 1's along the diagonal and zero's everywhere else. In index
notation, it is written as δij as it satis�es the properties of the Kronecker-Delta. For o�-
diagonal elements, i 6= j, meaning that the entry is zero. For on-diagonal elements, i = j,
and so the entry is one. Multiplying a matrix by the unit matrix returns the original
matrix; it can be thought of as multiplying by one.

3.6.1 Matrix Operations

There are a number of basic operations that we can perform on matrices, such as the
following:

• Transpose - This involves '�ipping' the elements of the matrix elements about the
diagonal; corresponding elements on either side of the diagonal are swapped.

(Aij)
T = Aji (3.21)

This swaps the order of the indices in the index notation; order is very important
here!

A =

 1 7 −3
−2 3 6
4 1 5

→ AT =

 1 −2 4
7 3 1
−3 6 5


• Complex Conjugate - Like with a normal complex number, we can apply the complex
conjugate operation to an entire matrix; this takes the complex conjugate of each
individual entry.

(B)ij = Bij (3.22)

Remember, this only operates on each individual element, and so we can take the
conjugation operator inside the bracket.

B =

1 + i −i 4
−i −7 + 4i i
4 i 13

→ B =

1− i i 4
i −7− 4i −i
4 −i 13


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• Hermitian Conjugate - This combines the previous two operations, and is usually
notated by †.

C† = C
T

(3.23)

3.6.2 Matrix Multiplication

As many of you may already know, we can multiply matrices together. Matrix multiplica-
tion is de�ned as:

Cik = AijBjk (3.24)

Note that, in general, this is not commutative; that is, AB 6= BA. This means, again, that
order is important. This de�nition also means that we can only multiply matrices if they
are of the appropriate dimensions. For us to be able to multiply to matrices together, we
require the number of columns of the �rst to be equal to the number of rows of the second.

For example,

E =

(
1 −4 7
9 3 −2

)
and F =

(
3 −2
4 6

)
are not able to be multiplied.

Why is this? It comes down to the way in which we perform matrix multiplication. For
matrices A, B and C such that AB = C, we take the dot product of the �rst row vector
A with the �rst column vector B, and this becomes the entry C11. The next entry C12 is
given by the product of the �rst row vector of A with the second column vector of B. We
progress along the columns of B with the �rst row of A until we run out of columns, and
these entries form the �rst row of C. We then use the second row vector of A and perform
the same operation on the columns of B to give the second row of C. We continue this
until we have done all the row vectors of A.

This might seem initially confusing, so let's take a look at an example. Suppose that we
have the two matrices

A =

(
1 −4 7
9 3 −2

)
and B =

3 −2 1
4 6 2
1 7 4


The product AB is de�ned, while BA is not due to the dimensions of each matrix. Let
us compute the �rst of these. The dot product of the �rst row of A and �rst column of B
is −6. Thus, this becomes the upper most left hand entry of the resultant matrix C. The
�rst row, second column: 23....We continue on this process until we obtain the result of:

C = AB =

(
−6 23 21
37 −14 7

)
Notice how we have multiplied a 2×3 matrix by a 3×3 matrix to generate a 2×3 matrix.
We can think of the multiplication as 'collapsing' the inner two numbers; 2× 3 and 3× 3
→ 2×3. This is always a good way to check whether your matrix multiplication is correct;
if the dimensions of the resultant matrix are not correct, then something has gone wrong!

Now it might be a little more obvious as to why the matrices have to be of appropriate size;
the dot product of two vectors is only de�ned if they are the same length, which places
restrictions on the row and column sizes of the matrices.
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3.6.3 Gaussian Elimination and Rank

The process of Gaussian elimination allows us to perform row operations on a matrix to
reduce it to upper echelon form. For example, a matrix A in upper echelon form resembles

A =

1 −4 7
0 3 4
0 0 5


In general, upper echelon form is where the matrix only has entries above or on the di-
agonal, and the rest of the matrix is �lled with zeros. We can do this because certain
manipulations, such as swapping columns and rows, or multiplying a row/column by a
constant does not change the properties of the matrix.

So how do we perform row reduction? Starting from the upper left-hand corner, we take
the �rst non-zero entry, and divide that row by that entry to give us one. We then take this
row away from the other rows to get a zero below the 'one' entry, remembering to modify
the other entries in the other rows. Once we have obtained zero's in the �rst column, we
move down and right by one, and apply the same process.

Consider the matrix B with rows R1, R2 and R3.

B =

1 4 −3
3 2 7
6 4 1


We now want to perform row operations on this matrix. Note that we do not use an equality
sign, a technically the matrices are not equal, but they exhibit the same properties.1 4 −3

3 −10 16
6 4 1

 ←−−3+

1 4 −3
0 −10 16
0 −20 19


←−

−6

+1 4 −3
0 1 −8/5
0 −20 19

 | · −1/10

1 4 −3
0 1 −8/5
0 0 −13


←−

20

+1 4 −3
0 1 −8/5
0 0 1


| · −1/13

Thus, in �ve steps, we have reduced the matrix B to upper echelon form.

A useful property to de�ne at this stage is the rank of a matrix. The rank of a matrix
gives the size of the image of the matrix; that is, it gives the dimensions of the space that
the matrix projects into.

rk(M) = dim(Im(M)) (3.25)

For example, if a matrix represents the coe�cients in a system of linear equations (see
Section (3.10)), then the nature of the solution will depend on whether the matrix has a
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rank that is maximal or otherwise. If the rank of a matrix is less than it's dimensions,

then it does not have an inverse. We can �nd the rank of a matrix by reducing it to upper
echelon form; the rank is the number of 'steps' in this form. For example, the matrix B
above is of rank 3. We will put this idea into practise later on in this chapter.

3.6.4 Matrix Trace

The trace is the sum of all the diagonal elements of a matrix.

tr(A) =
n∑
i=1

Aii (3.26)

It has some important properties:

� tr(A+B) = tr(A) + tr(B)

� tr(kA) = k tr(A)

� tr(AT ) = tr(A)

� tr
(
A
)

= tr(A)

� tr(AB) = tr(BA)

The trace is base invariant, meaning that all matrices it is equal to the sum of the eigen-
values, but more on this later!
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3.7 Determinants

A determinant maps vectors a1, . . . , an to a number number det(a1, . . . , an) such that:

det(. . . , αa+ βb, . . . ) = α det(. . . , a, . . . ) + β det(. . . , b, . . . ) (3.27)

det(. . . , a, . . . , b, . . . ) = −det(. . . , b, . . . , a, . . . ) (3.28)

det(e1, . . . , en) = 1 (3.29)

det(. . . , ai, . . . , ai, . . . ) = 0 (3.30)

Notice how is obeys similar symmetry properties to the Levi-Civita tensor; this is be-
cause one can de�ne the determinant using this tensor, but we will not do this here. An
alternative, computational de�nition of the determinant is

detA =
n∑

i,j=1

(−1)i+jAij detA(i,j) (3.31)

where A(i,j) is the matrix A without row i and column j. This is known as the co-factor
matrix. The determinant is only de�ned if the rank of the matrix is maximal.

3.7.1 Properties of the Determinant

The determinant has a number of properties. For an n×n square matrix A and invertible
matrix P, and scalar λ:

� det(AT ) = detA

� det(AB) = detAdetB

� det(PAP−1) = detA

� det(A−1) = 1/detA

� det(λA) = λn detA

3.7.2 Calculating the Determinant

We can calculate the determinant by the cofactor method. For a 2× 2 matrix, the deter-
minant is simply given by: ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc (3.32)

For a 3× 3 matrix, this becomes:∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g h

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ (3.33)

Evidently, this process can be repeated for larger and large matrices, but the calculation
soon becomes horrendously complicated, and so we start to use computation at this point.
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3.8 Matrix Inverse

A matrix inverse is a matrix A−1 that is related to the matrix A such that:

A−1A = AA−1 = I (3.34)

A matrix only has a well de�ned inverse if it is a quadratic matrix. A quadratic matrix
is only invertible if the rank of said matrix is maximal, meaning that all rows are linearly
independent (as otherwise the determinant is unde�ned).

Unlike with integers, the inverse is not just simply the inversion of all the entries in the
matrix (except for a diagonal matrix); this should not reverse the action of the matrix.
It is in fact a little more complicated. There are two main methods that we can use to
calculate the determinant:

1. The Co-factor Method - For a matrix A, let C be the co-factor matrix de�ned by

Cij = (−1)i+j detA(i,j)

Then, the inverse of A is calculated by:

A−1 =
1

detA
CT (3.35)

2. Row Operations - We can write the matrix as an augmented matrix with the identity
matrix on the right-hand side. If we row reduce the original matrix on the left-hand
side to the identity matrix, applying the same operations to the right-hand side, we
will obtain the inverse on the right-hand side.

Find the inverse of the matrix

A =

1 0 −1
2 1 −2
1 −3 0


by row reduction. Check your answer using the cofactor method.

Writing the system as an augmented matrix:1 0 −1 1 0 0
2 1 −2 0 1 0
1 −3 0 0 0 1


1 0 −1 1 0 0

0 1 0 −2 1 0
1 −3 0 0 0 1

 ←−−3+

1 0 −1 1 0 0
0 1 0 −2 1 0
0 −3 1 −1 0 1


←−

−1

+1 0 −1 1 0 0
0 1 0 −2 1 0
0 0 1 −7 3 1


←−
−3
+1 0 0 −6 3 1

0 1 0 −2 1 0
0 0 1 −7 3 1

 ←−
1

+
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Thus, the inverse of the matrix A is

A−1 =

−6 3 1
−2 1 0
−7 3 1


Now let us check this using the co-factor matrix method. It is trivial to �nd that the
determinant is 1. The co-factor matrix is:

C =

−6 −2 −7
3 1 3
1 0 1


The result follows by taking the transpose.
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3.9 Eigenvalues, Eigenvectors and Quadratic Forms

A quadratic matrix A has a scalar eigenvalue λ with corresponding eigenvector v if these
obey the equation

Av = λv (3.36)

We can �nd the eigenvalues of the matrix by calculating the characteristic polynomial
given by

X (λ) = det(A− λI) (3.37)

and setting it equal to zero. The characteristic polynomial has a number of properties:

• It is basis independent

X
PAP

−1(λ) = det(PAP−1 − λI)
= det(P(A− λI)P−1)
= detP det(A− λI) detP−1

= det(A− λI)

• The coe�cients are basis independent

X (λ) =

n∏
i=1

(Aii − λ) +Q(λn−2)

= (−1)nλn + (−1)n−1λn−1(

n∑
i=1

Aii) + · · ·+ detA

cn = (−1)n

cn−1 = (−1)n−1 trA

co = detA

To �nd the eigenvectors, we have to apply the condition that

(A− λI)v = 0 (3.38)

A matrix can be diagonalised if it has a set of eigenvectors v1, . . . , vn that form a basis.
We de�ne

P = (v1, . . . , vn)

i.e a matrix with the eigenvectors as column vectors. It is invertible because it is of maximal
rank owing to the fact that v1, . . . , vn are linearly independent because they form a basis.
We can thus diagonalise a matrix by

P−1AP = diag(λ1, . . . , λn) (3.39)

where diag(λ1, . . . , λn) is a diagonal matrix with the eigenvalues along the diagonal. This
means that as soon as we have found the eigenvalues of a matrix, we know it's diagonalised
form.

Lastly, two matrices A and B are simultaneously diagonalisable if and only if

[A,B] = 0 (3.40)

AB−BA = 0 (3.41)
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Let Â = P−1AP and B̂ = P−1BP.

[A,B] = PÂP−1PB̂P−1 −PB̂P−1PÂP−1

= PÂB̂P−1 −PB̂ÂP−1

= P
(
ÂB̂− B̂Â

)
P−1

= P
[
Â, B̂

]
P−1

= 0

The other side of the proof is much more complicated, and will not be covered here.

Diagonalise the matrix

A =

(
cosφ − sinφ
sinφ cosφ

)
over complex numbers.

First, let us �nd the eigenvalues.

X (λ) =

∣∣∣∣cosφ− λ − sinφ
sinφ cosφ− λ

∣∣∣∣
= (cosφ− λ)(cosφ− λ) + sin2 φ

= cos2 φ+ sin2 φ− 2 cosφλ+ λ2

0
!

= λ2 − 2 cosφλ+ 1

λ = cosφ± i sinφ

For λ1 = cosφ+ i sinφ:

(A− λ1I)v1 =

(
−i sinφ − sinφ

sinφ −i sinφ

)(
x
y

)
!

= 0

−ix− y = 0

x− iy = 0

x = iy

→ v1 =
1√
2

(
i
1

)
For λ2 = cosφ− i sinφ:

(A− λ1I)v1 =

(
i sinφ − sinφ
sinφ i sinφ

)(
x
y

)
!

= 0

ix− y = 0

x+ iy = 0

x = −iy

→ v1 =
1√
2

(
−i
1

)
Thus, we can automatically write down the diagonalised matrix:

Â =

(
eiφ 0
0 e−iφ

)
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3.9.1 Quadratic Forms

Quadratic forms are polynomial expressions of the form

Q(x) = xTAx = c (3.42)

where A is a symmetric matrix.(
xTA'x

)T
= xA'TxT

2Q(x) = xTA'x+ xA'TxT

= xT
(
A'+A'T

)
x

Q(x) =
1

2
xT
(
A'+A'T

)
x

Thus A can always be written as a symmetric matrix as

A =
1

2

(
A'+A'T

)
If we obtain the eigenvalues of this matrix, we can deduce the form of the surfaces or curves
described by Q(x).

Condition on λi 2D 3D

All equal, same sign as c circle sphere

All same sign as c ellipse ellipsoid

λi with both signs hyperbola hyperboloid

The lengths of the semi-major axis of these are given by:

li =

√
c

λi
(3.43)

A curve in two-dimensional space is de�ned by all x = (x, y)T which solve the equation

x2 + 3y2 − 2xy = 1. Show that the curve is an ellipse and determine the length of it's two

axes.

Clearly

A =

(
1 −1
−1 3

)
Finding the eigenvalues: ∣∣∣∣1− λ −1

−1 3− λ

∣∣∣∣ 1
= 0

(1− λ)(3− λ)− 1 = 0

λ2 − 4λ+ 2 = 0

→ λ = 2±
√

2

Using (3.43), we can thus intermediately state that:

Major Axis =
1√

2 +
√

2

Minor Axis =
1√

2−
√

2
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3.10 Systems of Linear Equations

As we have seen in the previous chapter, we can solve systems of equations by the use of
matrices. For example, the system of linear equations given by

a1x + a2y + a3z = b1
a4x + a5y + a6z = b2
a7x + a8y + a9z = b3

can be written in matrix from asa1 a2 a3
a4 a5 a5
a6 a7 a9

 xy
z

 =

b1b2
b3


Thus, for a vector of variables x and a vector of solutions b, then we have

A · x = b (3.44)

For a homogeneous equation (that is, b = 0), detA = 0 in order for a set of solutions to
exist.

For an inhomogeneous equation (that is, b 6= 0), detA 6= 0 for a solution. The nature
of the solution will depend on the rank of the coe�cient matrix A. For a three-variable
system:

� rk(A) = 3 → unique solution (single point)

� rk(A) = 2 → a line (one free parameter)

� rk(A) = 1 → a plane (two free parameters)

There are multiple methods to solve a system of linear equations. These include:

• Row Reduction - Use row reduction on the augmented coe�cient matrix with the
solutions on the right-hand side, and then solve the 'reduced' system of linear equa-
tions. This is generally the preferred method as it handles free parameters and
discontinuities more easily than the other methods

• Matrix Inverse - Assuming that the matrix is invertible, we can simply calculate
x = A−1b.

• Cramer's Method - This involves replacing each of the columns of A by the solutions
of the equation and calculating the determinant. LetBi be the matrixA with column
i replaced by b.

xi =
detBi

detA
(3.45)

x =
1

detA

detB1

detB2

detB3

 (3.46)

• Diagonalisation - We can diagonalise the coe�cient matrix, which will give us a
one-to-one equality between coe�cient modi�ed variables and the set of solutions.
Let P = (v1, v2, . . . , vn), where the vectors vi are the normalised eigenvectors of the
coe�cient matrix A.

dx

dt
+Ax = b

P−1
dx

dt
P+ Âx = P−1bP
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The linear system

x+ y + z = 1

x+ 2y + 4z = η

x+ 4y + 10z = η2

depends on the parameter η. Show that the rank of the coe�cient matrix is two. Explicitly

solve the system for cases where a solution exists.1 1 1 1
1 2 4 η
1 4 10 η2


1 1 1 1

0 1 3 η − 1
0 3 9 η2 − 1

 ←−−1+

←−−−−

−1

+1 1 1 1
0 1 3 η − 1
0 0 0 (η2 − 1)− 3(η − 1)


←−
−3
+

Thus, the rank of the coe�cient matrix is 2. For a solution to exist

(η2 − 1)− 3(η − 1)
!

= 0

η2 − 3η + 2 = 0

(η − 2)(η − 1) = 0

→ η = 2 or 1

The solutions will be parametrised by a free variable as the rank of the matrix is one less
than maximal.

Let η = 1 and x = (x, y, t). Here we have chosen the z coordinate as our free parameter.
Hence:

x+ y + t = 1

y + 3t = 0

y = −3t

x = 1 + 2t

The solutions will be in the form of the line

x =

1
0
0

+ t

 2
−3
1


Similarly, when η = 2, the solutions are

x =

0
1
0

+ t

 2
−3
1


Note that the solutions have the same direction vector; they are parallel lines passing
through di�erent points.
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3.11 Matrix Types

There are many di�erent types of matrices, all of which have di�erent properties. Some
relevant ones have been included below.

3.11.1 Hermitian and Symmetric Matrices

Hermitian matrices are those that obey the property

H = H† (3.47)

Symmetric matrices obey the same property, except they are restricted to just the real case
(i.e just the transpose). Their eigenvalues are real and their eigenvectors are orthonormal.

Using the scalar product:

λ 〈v, v〉 = 〈v,Hv〉
= 〈Hv, v〉
= 〈λv, v〉
= λ 〈v, v〉

This means that λ = λ, meaning that the eigenvalues must be real. Consider two eigen-
values and corresponding eigenvectors of H:

Hv1 = λ1v1

Hv2 = λ2v2

(λ1 − λ2) 〈v1, v2〉 = 〈λ1v1, v2〉 − 〈v1, λ2v2〉
= 〈v1,Hv2〉 − 〈v1,Hv2〉
= 0

As λ1 6= λ2, 〈v1, v2〉
!

= 0. This means that the eigenvectors are orthogonal.

3.11.2 Unitary and Orthogonal Matrices

Orthogonal matrices are those that satisfy

OOT = I (3.48)

OT = O−1 (3.49)

The column vectors of such matrices are mutually orthogonal.

O = (c1, c2, . . . , cn)

OOT = (c1 · c1, c2 · c2, . . . , cn · cn) = I

cicj = δij

For all i 6= j, the product is zero; thus the columns are mutually orthogonal.

Unitary matrices are very similar to orthogonal matrices, except they are de�ned over
complex �elds as well.

UU† = I (3.50)

U† = U−1 (3.51)
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The eigenvalues of unitary matrices are complex phases with magnitude one.

U†v = λv

Uv = λv

U†Uv = U†λv

v = λv

→ λ = eiφ

3.11.3 Projection Matrices

Projection matrices map a vector space onto a sub-vector space. If one projects a vector
into a sub-vector space, and then attempts to apply the projection again, one should obtain
the same result. This means that for projection matrices, we can write that:

P2 = P (3.52)

The projector will create a projection for each non zero element of the diagonal (all o�-
diagonal entries must be zero by this de�nition), and so the size of the vector space is given
by tr(P).

P2v = λv

Pv = λv

P2v = Pλv

P(λv) = λv

λ(λv) = λv

λ(λ− 1) = 0

Thus, projection matrices have eigenvalues λ = 0 or 1.

3.11.4 Rotational Matrices

Rotational matrices are those that leave the scalar product invariant. This makes sense for
it to be a rotation, as a rotation leaves the size of something the same, but just changes
it's orientation.

〈Rv,Rw〉 = 〈v, w〉
= RijvjRikvk

= (Rji)
T Rikvjwk

→ 〈v, w〉 = RTR 〈v, w〉

Thus, the product of the matrix and it's transpose must be equal to the unit matrix in
order to preserve size.

RTR = I

det(RTR) = 1

det(R)2 = 1

det(R) = ±1
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If we impose these two conditions on a general matrix two-dimensional matrix, we can
calculate the rotational matrix in two dimensions.

R =

(
a b
c d

)
RTR

!
=

(
1 0
0 1

)
(

1 0
0 1

)
=

(
a b
c d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
det(R)

!
= ±1

ad− bc = ±1

Solving the resultant equations simultaneously, we obtain the rotational matrix:

R(θ) =

(
cos θ ∓ sin θ
sin θ ± cos θ

)
(3.53)

This satis�es the properties that:

R(θ1)R(θ2) = R(θ1 + θ2)

R(αθ1 + βθ2) = αR(θ1) + βR(θ2)

Thus, we can �nd composite rotations by multiplying two rotational matrices together.

To �nd a the rotational matrices in three dimensions, one can go through the same process
with a general 3×3 matrix, but this is quite messy. Instead, we can decompose the rotation
into a rotation around the three axes. This means that all we need to do is �x a single
axis, and the apply the rotation to a particular plane. This allows us to obtain the three
rotational matrices of:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


3.11.5 The Exponential Matrix

The exponential matrix is an entity de�ned by

exp(A) =

∞∑
n=0

An

n!
(3.54)

For certain matrices, this can represent a rotation. For example, consider

exp(Mφ) for M =

(
0 −1
1 0

)
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Let us look at the positive powers of M.

M2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
= −I

exp(Mφ) = I+Mφ− 1

2!
Iφ2 − 1

3!
Mφ3 +

1

4!
Iφ4 + . . .

= M

(
φ− φ3

3!
+
φ5

5!
+ . . .

)
+ I

(
1− φ2

2!
+
φ4

4!
+ . . .

)
= M sinφ+ I cosφ

=

(
cosφ − sinφ
sinφ cosφ

)
It thus represents a rotation for exp(Mφ).

For two matrices A and B, [A,B] = 0 implies that they can be diagonalised by the same
matrix. Let Â = TAT−1 and B̂ = TBT−1.

exp(Â+ B̂) =

∞∑
n=0

Âii + B̂ii
n

+ B̂ii
n

n!

=

∞∑
n=0

Âii
n

n!
+
B̂ii

n

n!

= exp Â exp B̂

exp(TAT−1) = 1 +TAT−1 +
TAT−1TAT−1

2!
+ . . .

= T

(
1 +A+

A

2!
+ . . .

)
T−1

= T(expA)T−1

exp(Â+ B̂) = T(expA)T−1 ·T(expB)T−1

T(exp(A+B))T−1 = T(expA expB)T−1

→ exp(A+B) = expA expB
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