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1. Basic Calculus

In this chapter, we cover the main concepts of basic calculus, including:

• Di�erentiation

• Integration

• The Hyperbolic Functions

• Sequences and Series

• Limits

• Partial Calculus

Most students will be familiar with the majority of the concepts outlined in this chapter.
In light of this fact, the chapter does not go into much detail concerning the proofs of many
of the theorems; please refer to another text if a more detailed treatment is required.
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1.1 Di�erentiation

As many of you will already know, di�erentiation allows us to �nd the rate of change of a
function; taking the derivative of a given function f(x) will create another function f ′(x)
that will give the instantaneous rate of change of the original function. This is used in
physics to �nd the rate of change of certain physical quantities, as well as allowing us to
�nd maxima and minima of functions. We have already encountered both of these ideas
in the notes on CP1 and CP2.

1.1.1 Di�erentiation from First Principles

Consider the two points x and x + h of a function y = f(x′), as shown in the diagram
below.

Figure 1.1: Di�erentiation from �rst principles

We can write the average gradient over the interval as:

Gradient =
∆y

∆x′

=
f(x+ h)− f(x)

x+ h− x

=
f(x+ h)− f(x)

h

Thus, to �nd the instantaneous gradient, or derivative, we have to take the limit where h
is very small. This allows us to obtain the expression:

d

dx
(f(x)) = lim

h→0

f(x+ h)− f(x)

h
(1.1)
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1.1.2 The Chain Rule

Suppose that we have a function y = f(u) where u = g(x). Then we can write:

dy

dx
=
dy

du
× du

dx
(1.2)

This is known as the chain rule. As we will �nd out later, this is just a speci�c case of
another general property of functions (see (1.21)). It can be used to derive the following
expressions that we regularly use in di�erentiation. The left-hand side corresponds to the
function, the right-hand side to it's derivative.

xn → nxn−1

ef(x) → f ′(x)ef(x)

log(f(x))→ f ′(x)

f(x)

sinx→ cosx

cosx→ − sinx

tanx→ sec2 x

secx→ secx tanx

cotx→ − sin−2 x

These are always worth memorising such that one does not have to work them out every
time that they are to be used.

1.1.3 Properties of the Deritaive

As previously stated, the derivative of a function can tell us a large amount of information
about said function.

f ′(x) > 0→ The curve is rising (from left to right)

f ′(x) < 0→ The curve is falling (from left to right)

f ′(x) = 0→ The curve has a stationary point

We can then examine the second-derivative of the function to �nd the nature of the sta-
tionary point, as follows:

f ′′(x) < 0→Maximum turning point, concave down

f ′′(x) > 0→Minimum turning point, concave up

f ′′(x) = 0→ A point of in�exion, concavity is changing

These results can become particularly important when examining, for example, the poten-
tial energy curve of an object to �nd it's behaviour.

1.1.4 Leibnitz's Theorem

This is used to �nd the higher derivatives of a product of two functions. Consider y(x) =
u(x) · v(x). The notation of () in the exponentials is used to refer to the order of the
derivative of a function.

y(1) = u(1)v + uv(1)

y(2) = u(2)v + 2u(1)v(1) + uv(2)

y(3) = u(3)v + 3u(2)v(1) + 3u(1)v(2) + uv(3)
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This generalises to:

yn(x) = u(n)v +

(
n

1

)
u(n−1)v(1) +

(
n

2

)
u(n−2)v(2) + · · ·+

(
n

n− 1

)
u(1)v(n−1) + uv(n)

→ yn(x) =

n∑
k=0

(
n

k

)
u(k)v(n−k) (1.3)

where
(
n
k

)
are the binomial coe�cients. Always try to choose one of the terms in the

product that will disappear so as to reduce the number of derivatives that have to be
computed.
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1.2 Integration

Integration can be thought of as the opposite of di�erentiation; instead of �nding the rate
of change of the curve, it now allows us to �nd the area between the curve and the x-
axis. Physically, we can use this, for example, to �nd the equation of motion of an object
given it's acceleration, as the velocity and displacement are just the time integrals of the
acceleration.

1.2.1 The Fundamental Theorem of Calculus

Consider the following function:

I(x) =

∫ x

a
f(x′) dx′

We want to look at the upper and lower rectangles bounding the function, as shown Figure
(1.2). From the graph:

Figure 1.2: Deriving the fundamental theorem of calculus

(x− a) f(x) 6 I(x) 6 (x− a) f(a)

Di�erentiate both sides and take the limit as a→ x.

lim
a→x

∣∣∣ f(x) + f ′(x) (x− a) 6
d

dx
(I(x)) 6 lim

a→x

∣∣∣ f(a) + f ′(a) (x− a)

Both the left-hand and right-hand sides of this inequality tend to the same value, and so
we arrive at the Fundamental Theorem of Calculus.

d

dx
(I(x)) = f(x) (1.4)

i.e that the derivative of the integral of function is the function itself.
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1.2.2 Standard Integration Techniques

We can use a variety of techniques in order to evaluate a de�nite (one containing limits
of integration) or inde�nite integral. In the latter case, always remember to include the
constant of integration (usually denoted by C).

• Standard Form - Some integrals we just have to know, as unlike di�erentiation we
cannot easily work out the result from �rst principles.∫

cosx dx = sinx+ C∫
xn dx =

xn+1

n+ 1
+ C

• By Inspection - This is just a sophisticated way of saying "guess-and-check"; we
need to check whether the integrand (the expression inside the integral) contains a
function and the derivative of a functions argument.∫

xex
2
dx =

ex
2

2
+ C

• Change of variables - We can make a substation in the integrand to change to a new
set of variables that we can more easily use to evaluate the integral. If the integral
is de�nite, remember to change the variables of integration.

I =

∫
dx√

1− x2
x = sin θ

dx = cos θ · dθ

Substituting these results into the integral:

I =

∫
cos θ

cos θ
dθ

=

∫
dθ

= θ + C

= sin−1 x+ C

• Integrals of Sines and Cosines - When the integrand purely contains sines and cosines,
always remember to apply the following identities appropriately:

cos2 x+ sin2 x = 1 (1.5)

tan2 x+ 1 = sec2 x (1.6)

sin 2x = 2 cosx sinx (1.7)

cos 2x = cos2 x− sin2 x (1.8)

• Integration by Parts - This is essentially the reverse of the product rule for di�eren-
tiation. ∫

d

dx
(uv) =

∫ (
du

dx
v +

dv

dx
u

)
dx

uv =

∫
v
du

dx
dx+

∫
u
dv

dx
dx
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∫
u dv = uv −

∫
v du (1.9)

With an appropriate choice of the functions u and v we can evaluate some more
di�cult integrals. Consider the following example.

In =

∫ ∞
0

xne−x dx

Making the substitution:

u = xn

u′ = nxn−1

v′ = e−x

v = −e−x

Thus:

In =
[
xne−x

]∞
0

+

∫ ∞
0

nxn−1e−x dx

= n

∫ ∞
0

xn−1e−x dx

→ In = n In−1

• Partial Fractions - This involves splitting up a fraction with factored terms in the
denominator into individual fractions that can then be integrated. As a general rule,
we write out the desired fractions to a coe�cient, and then solve for the coe�cients
by equating powers on either side of the equation. Always remember that if there
are quadratic or higher terms in the denominator, we need to include terms up to
the order below in the numerator. For example:

3x4 + 4x3

(x+ 2) (x2 + 3)2
=

A

x+ 2
+
Bx+ C

x2 + 3
+

Dx+ E

(x2 + 3)2

3x4 + 4x3 = A
(
x2 + 3

)2
+ (Bx+ C)

(
x2 + 3

)
(x+ 2) + (Dx+ E)(x+ 2)

and then equate coe�cients.

1.2.3 Properties of De�nite Integrals

Below are some of the properties of de�nite integrals which can often by used to simplify
some problems.

• For a well behaved function f(x): ∫ a

a
f(x) dx = 0 (1.10)

This is intuitively obvious; if we integrate over a zero integral, we should get a zero
result.

• Assuming that b lies within the interval a < x < c:∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx
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• Letting c = a within the previous identity:∫ a

a
f(x) dx =

∫ b

a
f(x) dx+

∫ a

b
f(x) dx

∫ b

a
f(x) dx = −

∫ a

b
f(x)dx (1.11)

• If f(x) is even: ∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx (1.12)

If f(x) is odd: ∫ a

−a
f(x) dx = 0 (1.13)

This last result follows trivially from applying (1.11).
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1.3 Hyperbolic Functions

The Hyperbolic Functions are another class of functions (like the hyperbolic functions) that
some readers may have already encountered. It is worth learning the properties of these
functions and various related identities, but they can be worked out by hand if required.
Graphically, they are represented as:

Figure 1.3: The Hyperbolic Functions

1.3.1 Hyperbolic Sine

sinhx =
e2 − e−x

2
d

dx
(sinhx) = coshx∫

sinh ax dx =
cosh ax

a

sinh−1 x = ln
(
x+

√
x2 + 1

)
1.3.2 Hyperbolic Cosine

sinhx =
e2 + e−x

2
d

dx
(coshx) = sinhx∫

cosh ax dx =
sinh ax

a

sinh−1 x = ln
(
x+

√
x2 − 1

)
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1.3.3 Hyperbolic Tangent

tanhx =
1− e−2x

1 + e 2x

d

dx
(tanhx) = cosh−2 x∫

tanhx dx =
ln(cosh ax)

a

tanh−1x =
1

2
ln

(
1 + x

1− x

)
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1.4 Sequences and Series

In general, sequences are a set of numbers or expressions that are related by an expressible
rule, or set of rules. There are two main types of series.

1.4.1 Geometric Series

A geometric series is characterised by a common ratio; the series progresses by multiplying
the previous term by said common ratio.

a+ ar + ar2 + ar3 + · · ·+ arn =
n∑
k=0

ark

In the case for |r| > 1, the sum over all the terms in the series is given by:

S =
a (1− rn)

1− r
(1.14)

This series is divergent; that is, it will continuously increase in magnitude. However, when
|r| < 1, the series will converge to a �nite value:

S∞ = lim
n→∞

a (1− rn)

1− r

S∞ =
a

1− r
(1.15)

1.4.2 Arithmetic Series

This is characterised by a common di�erence; the series progresses by adding the common
di�erence to the previous term.

a+ (a+ d) + (a+ 2d) + · · ·+ (a+ nd) =
n∑
k=0

a+ (k − 1)d

There are no cases of d in which the series is convergent, it will always diverge. The sum
of such a series is given by:

S =
n

2
(2a+ (n− 1)d) (1.16)

1.4.3 Taylor Series Expansion

The Taylor Series Expansion, more usually referred to as the Taylor Series, is used to
approximate the value of a function around a point. Consider the function y = f(x) at
the point x = xo. Evidently, the very �rst approximation to the value of the function at
this point is y = a. The next better approximation is evidently:

f(x) = f(a) + f ′(a)(x− a)

Then:

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2

If we continue extrapolating the series, we arrive at the Taylor series expansion:

f(x) =
∞∑
n=0

f (n)

n!
(x− a)n (1.17)
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We can use this around a point to �nd the behaviour of an object for small oscillations (we
have seen this in the Lagrangian section of the CP1 notes), or just to �nd approximate
expressions for functions given a small parameter. This is one of the bread-and-butter tools
for a physicist, and so it is recommended that readers get very familiar with computing
and manipulating these expansion expressions.

Often, it can be laborious to calculate these expansions on the �y, and so it is worth
remembering a few common ones:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

cosx = 1− x2

2!
+
x4

4!
+ . . .

sinx = x− x3

3!
+
x5

5!
+ . . .

tanx = x+
x3

3!
+

2x5

15
+ . . .

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − . . .

1√
1 + x

= 1− 1

2
x+

3

8
x2 − 5

16
x3 + . . .

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − . . .

1.4.4 The Parametric Integral

We can now combine our knowledge of the Taylor Series and the Fundamental Theorem
of Calculus (1.4) to tackle a parametric integral. Consider the following:

I(x) =

∫ x

0
F (x, t) dt

for a well de�ned function F (x, t) over the interval of integration. We now want to consider
integration from �rst principles in order to �nd the derivative of I(x).

I(x+ dx)− I(x) =

∫ x+dx

0
F (x+ dx, t) dt−

∫ x

0
F (x, t) dt

=

∫ x+dx

0
F (x, t) dt−

∫ x

0
F (x, t) dt+ dx

∫ x+dx

0
F ′(x, t) dt

Hence, we arrive at the result that:

dI

dx
= F (x, x) +

∫ x

0
F ′(x, t) dt (1.18)

This can be useful when trying to di�erentiate a 'parametric integral' such as I(x).
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1.5 Limits

If the limit of a function exists, the function approaches that value as the argument ap-
proaches some limit. The limit exists i� the limit approaching from above and below is
the same. Some methods of �nding limits include:

• Factoring/conjugate manipulation

• Divide throughout by the highest/lowest power of x in the denominator/numerator
to allow terms to disappear

• "Exponentials beat powers beat logs" as the argument tends to some limit

• Expand the function using a Taylor Series on the individual terms to either leading
or second order and look at the resultant coe�cients. For example:

lim
x→0

ex − 1

sinx
= lim

x→0

1 + x+ x2

2! + · · · − 1

sinx

≈ lim
x→0

x

sinx

= 1

1.5.1 L'Hôpital's Rule

This rule states that if

lim
x→z

a(x)

b(x)

is unde�ned for some indeterminate form, then the limit is given by:

lim
x→z

f(x) = lim
x→z

a(n)(x)

b(n)(x)
(1.19)

where n is the order of the derivative required for the limit to become de�ned. For example:

lim
x→0

sinx+ x

x+ x2
= lim

x→0

cosx+ 1

2x+ 1

= 2

But you may ask, where does this come from? Consider the Taylor expansion of the
function in the limit to second order:

lim
x→z

a(x)

b(x)
= lim

x→z

a(z) + a′(z)(x− z) + . . .

b(z) + b′(z)(x− z) + . . .

= lim
x→z

a(z)

b(z)

unless a(z) = 0, b(z) = 0. In this case, we divide through by (x−z), and the result follows.
This holds true for all derivatives of the quotient until the limit becomes de�ned.
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1.6 Partial Calculus

Thus far, we have only dealt with single variable functions, where derivatives are total ;
that is, they are de�ned entirely in terms of this single variable. So how do we take a

derivative of a multi-variable function? In most cases, we cannot �nd the total derivative
of the function as it is not de�ned in terms of a single variable; we instead need to �nd the
partial derivative.

The partial derivative is found by di�erentiating the function with respect to the chosen
variable while treating the other as a constant. Instead of a 'straight' d symbol, we use the
symbol ∂ to notate the partial derivative. For example:

z = f(x, y)

= 3(x2 + y2) + e−(x
2+y2)

∂z

∂x
= 6x− 2xe−(x

2+y2)

∂z

∂y
= 6y − 2ye−(x

2+y2)

Astute readers will notice that there is some kind of symmetry in this function; in fact, it
is radially symmetric, which we can see by letting r2 = x2 + y2. This will become more
second nature when we cover more coordinate systems in the next chapter.

As it becomes quite tiresome to write out partial derivatives in the form ∂f
∂x when we are

using them a lot, we instead use the notation fx ; i.e the �rst partial derivative with respect

to x. Similarly, fxx corresponds to ∂2f
∂x2

and so on.

1.6.1 The Total Derivative

Let us �rst consider the Taylor Series expansion for a two dimensional function. The proof
is not given here, but it should be quite intuitively obvious how it is a generalisation as the
single variable Taylor Series. Let us expand the function around the point (a, b), and so we
assume all the derivatives are evaluated at this point. Let (x− a) = δx and (y − b) = δy.

f(x, y) = f(a, b) + fxδx+ fyδy +
1

2!

(
fxxδx

2 + fyyδy
2 + 2fxyδxδy

)
+ . . . (1.20)

Now, imagine that we want to obtain an expression for a small change in the function δf .

δf = f(x+ δx, y + δy)− f(x, y)

= f(x+ δx, y + δy)− f(x, y + δy) + f(x, y + δy)− f(x, y)

=
f(x+ δx, y + δy)− f(x, y + δy)

δx
· δx+

f(x, y + δy)− f(x, y)

δy
· δy

Taking the limit where δx→ 0 and δy → 0:

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (1.21)

This is known as the total derivative of a function, and is a more general version of the
chain rule for a single variable function. The subscripts outside the brackets denote the
variable that we are holding constant when doing the di�erentiation. It is not always nec-
essary to put these in when you become more familiar with partial derivatives, but it does
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help to keep track of what is being held constant.

This should be the starting point for �nding expressions using partial derivatives. Consider
a function f = f(x, y, z).

dx =
∂x

∂y
dy +

∂x

∂z
dz

dy =
∂y

∂x
dx+

∂y

∂z
dz

Substituting one into the other, we obtain:

dx =

(
∂x

∂y

∂y

∂x

)
dx+

(
∂x

∂y

∂y

∂z
+
∂x

∂z

)
dz

If we hold z constant (i.e dz = 0, the change is z is zero), we get the reciprocity relation:

∂x

∂y
=

(
∂y

∂x

)−1
(1.22)

If we hold x constant, we get the cyclical relation:

∂y

∂z
· ∂z
∂x
· ∂x
∂y

= −1 (1.23)

The second property may be less intuitively obvious than the �rst, but both are important
properties of partial derivatives worth bearing in mind.

A particular class of functions, called exact di�erentials, satisfy the property that their
derivatives commute; the second successive partial derivatives are the same.

∂2f

∂x∂y
=

∂2f

∂y∂x
(1.24)

We deal with the properties of exact di�erentials fully in the next chapter.

1.6.2 Stationary Points and Contour Sketches

Like with single variable functions, multi-variable functions also have stationary points,
though the conditions for them to exist is a little more complicated. To understand this,
let us �rst introduce the concept of a contour sketch.

A contour sketch is a way of representing the form of a multi-variable function in a two-
dimensional format, as evidently z = f(x, y) represents a three-dimensional surface ( z is
the 'height' of the function). Essentially, we can think of a contour sketch as being like a
geographical contour map; it tells us where the function increases and decreases, and the
rapidity with which it does so. Some general forms of the contours are shown below.

17



Toby Adkins CP2

Figure 1.4: The contours around a minimum or a maximum

The contours around a minimum and maximum are closed curves in the forms of ellipses
or circles. We show whether the function is increasing or decreasing with a gradient arrow.

Figure 1.5: The contours around a saddle point

The contours around a circle are open hyperbolae, bounded by level lines (shown with the
dotted lines). But where does this come from?

In a similar vein to the single variable function, for a function f = f(x, y), at a stationary
point we require:

∂f

∂x
=
∂f

∂y
= 0 (1.25)

This is equivalent to saying that the derivative is stationary in both the x and y directions.
The nature of the stationary points can be determined by looking at the change in the

18
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function df = f(x, y)−f(a, b) around the stationary point (a, b) under the condition given
by (1.25).

0 = f(x, y)− f(a, b)

= fxx(x− a)2 + fyy(y − b)2 + 2fxy(x− a)(y − b)
= fxx δx

2 + fyy δy
2 + 2fxy δxδy

We can write this equation as a quadratic form by letting δr = (δx, δy).

0 = δr ·A · δr

A =

(
fxx fxy
fxy fyy

)
For a solution to exist, we require that det(A− λI) = 0:

0 = λ2 − (fxx + fyy)λ+ fxxfyy − fxy2

λ =
1

2

(
fxx + fyy ±

√
(fxx + fyy)2 − 4(fxx fyy − fxy2)

)
As we have seen above, the contour lines around a maximum or minimum have elliptical
level lines; this means that we need the eigenvalues λ1 and λ2 to have the same sign. For a
saddle point, the contour lines are hyperbolae, meaning that the eigenvalues have to have
opposite signs. In this case, the gradient of the level lines is given by:

η = ± λ1
|λ2|

(1.26)

This gives rise to the following conditions:

• At a maximum:

fxy
2 < fxx fyy

fxx < 0

fyy < 0

• At a minimum:

fxy
2 < fxx fyy

fxx > 0

fyy > 0

• At a saddle point:

fxy
2 > fxx fyy

If you are confused about this derivation in that it uses the concept of quadratic forms,
we would recommend that you take a look at the section on quadratic forms in the CP3
notes.
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2. Vector Calculus

This chapter aims to cover the basic concepts of vector calculus, including:

• Coordinate Systems

• Multiple Integrals

• Surface, Volume and Flux Integrals

• The Del (∇) Operator

• Index Notation and Vector Calculus

• Vector Calculus Theorems

• Line Integrals and Conservative Vector Fields

Vector Calculus is what the name suggests; it is the calculus of vectors and vector �elds.
This is a very useful tool in many areas of physics, but for this course is mainly used in our
treatment of Electromagnetism. Some of the concepts covered in this section might seem
initially di�cult to grasp, but they do become a lot easier with practise and familiarity.
Some examples have been included to illustrate the concepts introduced.
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2.1 Coordinate Systems

Thus far, we have mainly dealt with the Cartesian and plane-polar coordinate systems.
However, there are other coordinate systems which are commonly used, and it is imperative
that any physics student is familiar with these. Do not be alarmed if you are not familiar
with some of the terms here; they will become clear as you read on, I have just placed
them here for reference.

2.1.1 Cartesian Coordinates

The unit vectors are x̂, ŷ and ẑ. As previously discussed, these have time-invariant direc-
tions. The coordinate system has the following characteristics:

• Line element: ds2 = dx2 + dy2 + dz2

• Area element: dS = (dxdy, dxdz, dydz)

• Volume element: dV = dxdydz

2.1.2 Cylindrical Coordinates

As the name suggests, these are used when there is some kind of cylindrical symmetry to
the object, such as when there is plane-polar symmetry and a variation in the ẑ direction.
The unit vectors are r̂, θ̂, and ẑ.

Figure 2.1: Cylindrical Coordinates

Converting from Cartesian coordinates:

x = r cos θ

y = r sin θ

z = z

This coordinate system has the following characteristics:

• Line element: ds2 = dr2 + r2dθ2 + dz2
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• Area element: Let a be the radius for some planar circular area parallel with the xy
plane

dS = r̂ · a2 dθdz
r̂ = (cos θ, sin θ, 0)

• Volume element: dV = r drdθdz

As we have already seen with plane-polar coordinates, the r̂ and θ̂ unit vectors are not
constant in time for a moving point, though ẑ is.

2.1.3 Spherical Coordinates

As the name suggests, these are used when there is some kind of spherical symmetry to
the object, such as when the �eld is entirely radial in the case of a central force. The unit
vectors are r̂, φ̂, and θ̂.

Figure 2.2: Spherical Coordinates

Converting from Cartesian coordinates:

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ

The coordinate system has the following characteristics:

• Line element: ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2

• Area Element: Let a be the value of the radius for some sphere

dS = r̂ · a2 sin θ dθdφ

r̂ = (cosφ sin θ, sinφ sin θ, cos θ)

• Volume element: dV = r2 sin θ dθdφdr
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2.2 Multiple Integrals

These are similar to normal integrals, except we instead of performing integration over a
single 'element', such as dx, we instead integrate successively over a series of elements. To
get an idea of how this is done, consider the following example.

Evaluate the integral

I =

∫ ∫
A
x dxdy

where A is the �nite area enclosed by the parabola y = x2 and the straight line 2x−y+8 = 0.

First, let us sketch the area of integration:

Figure 2.3: A basic example

The two curves intersect at:

y = 2x+ 8

x2 − 2x− 8 = 0

(x− 4)(x+ 2) = 0

x = −2 or 4

At this stage, we need to choose which order we want to integrate in; dx then dy or dy
the dx. In this case, seeing as we already have the dx numerical limits, we will do these
second, as follows:

I =

∫ 4

−2
x dx

∫ 2x+8

x2
dy

=

∫ 4

−2
x dx [y]2x+8

x2

=

∫ 4

−2
dx 2x2 + 8x− x3

=

[
2x3

3
+ 4x2 − x4

4

]4
−2

→ I = 36
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Notice how the limits on the �rst integral actually contained the variable x. This is because
the limits on the dy integral, instead of being from a value to a value, are instead from a
curve to a curve. In this case, we integrate from the lower curve y = x2 to the upper curve
y = 2x+ 8. It is recommended to get some practise at doing these types of integrals to get
used to picking the limits.

2.2.1 Changing the Order of Integration

The order in which the integration can be carried out can be reversed in order to simplify
the integral. First, sketch the region of integration. For the outer bounds (i.e those that
we will compute �rst), draw a line from −∞ to ∞ in the direction required. The order
that the line crosses the curves gives the order of the �rst limits. Then the second limits
are just the numerical bounds that correspond to these limits.

Evaluate the integral

I =

∫ π

0
dy

∫ π

y
dx

sinx

x

by changing the order of integration.

Again, we start by sketching the region of integration:

Figure 2.4: Changing the order of integration

Applying the technique described above, it becomes clear that:

dx : 0→ x

dy : 0→ π

Thus, we can more easily evaluate the integral:

I =

∫ π

0
dx

∫ x

0

sinx

x
dy

=

∫ π

0
dx sinx

→ I = 2
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2.2.2 Change of Basis

A coordinate or basis transformation can be used to simply multiple integrals when the
region of integration is particularly complicated, or the integrand itself is particularly
complicated. We do this using a quantity called the Jacobian.

J =
∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ (2.1)

where u and v are the new basis coordinates, such as r or θ. This has the important
property that:

∂(x, y)

∂(u, v)
· ∂(u, v)

∂(x, y)
= 1 (2.2)

This can be proven by using the property that det(AB) = det(A) det(B) for two matrices
A and B.

AB =

(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
·

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=

(
∂x
∂u

∂u
∂x + ∂x

∂v
∂v
∂x

∂x
∂y

∂u
∂y + ∂x

∂v
∂v
∂y

∂y
∂u

∂u
∂x + ∂y

∂v
∂v
∂x

∂y
∂u

∂u
∂y + ∂y

∂v
∂v
∂y

)

=

(
1 0
0 1

)
Thus, det(AB) = 1 and so the result follows. Though we have just considered the 'two-
variable' case to derive this result, it actually holds for the n-dimensional Jacobian.

Evaluate the following integral

I =

∫ ∫
A
dxdy

(
x2 − y2

)
e(x

2−xy+y2)

in the region bounded by y = x, y = x − 1, y = 1
x and x = 0, using the transformation

u = x− y and v = xy.

The trick to these questions is �nding the new limits of integration; the rest is just trivial
manipulation of the integrand.

y = x− 1

→ u = 1

y = x

→ u = 0

y =
1

x
→ v = 1

y = 0

→ v = 0
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Now, computing the Jacobian:

∂(u, v)

∂(x, y)
=

∣∣∣∣1 −1
y x

∣∣∣∣
= x+ y

Using (2.2), it is then clear that:

dxdy =
1

x+ y
dudv

We can now use all this information to evaluate the integral.

I =

∫ ∫
A
dxdy

(
x2 − y2

)
e(x

2−xy+y2)

=

∫ ∫
A
dxdy (x+ y)(x− y) e(x−y)

2+xy

=

∫ ∫
A′
dudv u eu

2+v

=

∫ 1

0
du

∫ 1

0
dv eu

2+v

→ I =
1

2
(e− 1)2
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2.3 Surface and Volume Integrals

In order to compute a volume or surface area, we require expressions for dS or dV and the
appropriate limits of integration.

S =

∫
dS (2.3)

V =

∫
dV (2.4)

To illustrate this, consider the following simple example.

A sphere of radius R is centred on the origin. Find the volume enclosed by the two parallel

planes at z = ±a.

Let us �rst, as always, �nd the limits of integration. Incidentally, this is always the hardest
bit of these types of questions, as long as you can integrate properly! We can use cylindrical
polar coordinates.

dr : 0→
√
R2 − z2

dθ : 0→ 2π

dz : −a→ a

Hence, the volume is given by:

V =

∫ ∫ ∫
V
r drdθdz

=

∫ a

−a
dz

∫ 2π

0
dθ

∫ √R2−z2

0
dr r

→ V =
2πa

3
(3R2 − a2)

A quick note; a cone is generally de�ned by the equation:

r = a
(

1− z

h

)
(2.5)

We can also use similar techniques to �nd the mass and centre of mass of a particular
laminar surface or volume:

M =

∫
dm =

∫
ρ dV (2.6)

rCM =
1

M

∫
r dm (2.7)

2.3.1 Coordinate Transformations

As we have seen before, coordinate transformations can be useful in evaluating surface or
volume integrals if there is some kind of symmetry that the problem can be reduced to.

Find the volume of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= R2
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At �rst glance, this problem looks terribly complicated. However, let us �rst start by
making the following substitutions:

u =
x

a
, v =

y

b
, w =

z

c

We obtain

u2 + v2 + w2 = R2

which is the equation for a sphere in the uvw coordinate system. If we compute the
Jacobian for this transformation, we can then easily evaluate the integral, as we know how
to �nd the volume of a sphere.

dxdydz = abcdudvdw

= abc r2 sin θ drdθdφ

V =

∫
dxdydz

= adc

∫
r2 sin θ drdθdφ

→ V =
4π

3
abc R3

2.3.2 The Method of Projection

The method of projection, also known as Monge Projection, allows us to integrate over
a surface de�ned by z = f(x, y). Let n̂ be the unit normal to the surface, and k̂ be the
normal z unit vector, as shown below.

Figure 2.5: Considering a surface element dA

As n̂ and k̂ are unit vectors:

n̂ · k̂ = cos θ

dxdy = cos θ dS

dS =
1

|n̂ · k̂|
dxdy

Hence:

dS =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (2.8)
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As usual, let us consider an example to illustrate this method. Find the volume under the

inverted paraboloid z = 6− x2 − y2 and above z = 0, as well as it's surface area.

First, the volume (this is usually the easier calculation):

V =

∫ ∫ ∫
V
r drdθdz

=

∫ 2π

0
dθ

∫ 0

√
6
dr

∫ 6−r2

0
r dz

→ V = 18π

Now for the surface area:

dS =
√

1 + (−2x)2 + (−2y)2 dxdy

=
√

1 + 4(x2 + y2) dxdy

=
√

1 + 4r2 dxdy

→ dS =
√

1 + 4r2 r drdθ

Putting it all together:

S =

∫ ∫
S

√
1 + 4r2 r drdθ

=

∫ 2π

0
dθ

∫ √6
0

√
1 + 4r2 r dr

→ S =
31π

12

Now, �nd the volume enclosed by the surfaces z = ax2 + by2 and z = 6− cx2 − dy2.

These two curves intersect along the surface xs(a+ c) + y2(b+ d) = 6. The limits on the
integration are thus:

dx : −
√

6√
a+ c

→
√

6√
a+ c

dy : −
√

6√
b+ d

→
√

6√
b+ d

We can then make the substitutions that:

dy =
dy′√
b+ d

, dx =
dx′√
a+ c

Hence, using cylindrical coordinates as before:

V =

∫ 6

−6

dx′√
a+ c

∫ 6

−6

dy′√
b+ d

∫ 6−r′2

0
dz

=
1√

(a+ c)(b+ d)

∫ 6

0
dr′

∫ 2π

0
dθ

∫ 6−r′2

0
dr′

→ V =
18π√

(a+ c)(b+ d)
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2.3.3 Flux Integrals

These are integrals that allow us to compute the 'amount' of a vector �eld passing through
a surface. Put in another way, it is a measure of how much the surface 'cuts' the �eld.
Generally, such integrals are of the form:

Flux =

∫
S
F · dS (2.9)

where dS = n̂ · dS. The trick to evaluating these integrals is �nding an expression for the
unit normal to the surface n̂. In general, it can be computed via the following:

n =

∣∣∣∣∂r∂u × ∂r

∂v

∣∣∣∣ (2.10)

where r is the general position vector, with u and v being the other variables with which
r is parametrised. Let's do an example.

Calculate ∫
F · dS

for F = (6z, 2x+ y,−x) the region bounded by x2 + z2 = 9, x = 0, y = 0, z = 0 and y = 8.

We can parametrise the surface easily as it has cylindrical symmetry (x2+z2 = 9 represents
an in�nite cylinder with radius 3 with axis in the ŷ direction). Let y = t, x = 3 cos θ and
z = 3 sin θ.

r(θ, t) = (3 cos θ, t, 3 sin θ)

∂r

∂θ
= (−3 sin θ, 0, 3 cos θ)

∂r

∂t
= (0, 1, 0)

n̂ = (cos θ, 0, sin θ)

Note we have normalised the normal vector here. The rest of the evaluation has been left
for the reader to complete, but they should �nd that Flux = 18π.
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2.4 The Del (∇) Operator
The Del Operator, notated by ∇, is a 'derivative operator', given by:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(2.11)

This is used in Vector Calculus to perform three main operations.

2.4.1 Gradient

This operation creates a vector from a scalar �eld or potential. Essentially, it tells us how
a scalar �eld manifests itself as a vector �eld. We have already seen this in terms of the
force resulting from a conservative potential; F = −∇U .

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
(2.12)

Taking the gradient of a scalar function φ will generate a vector normal to the surface
described by φ. Consider a curve r(t) that lies on φ.

dφ = ∇φ · dr

For dφ = 0, ∇φ · dr = 0. However, for this to be the case, dr must lie along the curve.
This means that:

→ ∇φ ⊥ dr

A successive application of the gradient then divergence operator is known as the Laplace
Operator.

∆ ≡ ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.13)

This crops up a a lot in the physics of waves, as we have already seen with Electromagnetic
Waves in CP2.

2.4.2 Divergence

This can be thought of as a measure of how a vector �eld "spreads out" from a point or
through a region.

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(2.14)

2.4.3 Curl

This is an analogue for the way a �eld "rotates", or the amount of vector �eld sources or
sinks in a region. If a �eld has zero curl, it is said to be irrotational.

∇× F =

∣∣∣∣∣∣
e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ (2.15)

We compute this in the similar way to the cross-product by evaluating the determinant
above.
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2.4.4 Directional Derivative

The Directional Derivative of a function at a point is given by:

∇f φ = ∇φ · v̂ (2.16)

where v̂ a unit vector in the direction along which you wish to evaluate the derivative. It
has a couple of useful properties:

• The greatest change in the function φ is along the direction of ∇φ as this is perpen-
dicular to the surface

• Consequently, the function is stationary along the tangent plane or line with unit
normal given by:

n̂ =
∇φ
|∇φ|

(2.17)

• For a small change in the value of the function dφ, we can approximate it by:

dφ = d |∇φ| (2.18)

where d is the distance moved in the direction of ∇φ. Note that this is only de�ned
for small changes in the function as we have assumed that ∇φ is constant as we move
along the function.
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2.5 Index Notation and Vector Calculus

It will be assumed that the reader has already read the section in the CP3 notes on index
notation, and so is already familiar with the way it functions. Some important expressions
include:

∂irj = δij (2.19)

∇ = ∂iei (2.20)

(∇× F )i = εijk∂jFk (2.21)

Using these, we can prove a variety of scalar and vector identities. As always, index
notation remains very much the fastest way to prove a lot of these.

2.5.1 Scalar Identities

We will use φ and ψ to denote our scalar �elds, and F to denote our vector �elds.

• ∇ × (∇φ) = 0

∇× (∇φ) = εijk∂i∂kφ

= εikj∂k∂iφ

= −εijk∂i∂kφ
= 0

This is due to the properties of the perfectly anti-symmetric tensor, and the fact that
derivatives commute.

• ∇(φψ) = φ∇ψ + ψ∇φ

∇(φψ) = ∂i(φψ)

= φ∂iψ + ψ∂iφ

= φ∇ψ + ψ∇φ

Here, we have simply used the chain rule for the derivative with ∂i.

• ∇ · (φF ) = φ∇ · F + F ∇φ

∇ · (φF ) = ∂i(φF )i

= φ(∂iFi) + Fi(∂iφ)

= φ∇ · F + F ∇φ

• ∇rn = r nrn−2 where r is the magnitude of the position vector. For some scalar
function f(r):

∂if(r) = f ′(r)∂ir

= f ′(r)
xi
r

∇f(r) = r f ′(r)
1

r

∇rn = r
d

dr
(rn)

1

r
= r nrn−2

This is a result worth remembering, as it can be very useful when it comes to radial
�elds.
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2.5.2 Vector Identities

In this case, we will use F and G to denote our vector �elds.

• ∇ · (F ×G) = G · (∇× F )− F · (∇×G)

(∇ · (F ×G))i = ∂i(εijkFjGk)

= εijk(∂iFj)Gk + εijkaj(∂iGk)

= εkijGk(∂iFj)− εjikFj(∂iGK)

= G · (∇× F )− F · (∇×G)

• ∇ · (∇× F ) = 0
This is proven in the same way as the analogue identity for the scalar �elds above.

• ∇ × (F ×G) = F (∇ ·G)−G(∇ · F ) + (G · ∇)F − (F · ∇)G

∇× (F ×G) = εklm∂l(F ×G)m

= εijkεklm∂lFiGj

= (δimδjl − δilδjm)∂lFiGj

= ∂j(FiGj)− ∂i(FiGj)
= Fi∂jGj +Gj∂jFi − (Fi∂jGj +Gj∂iFi)

= F (∇ ·G)−G(∇ · F ) + (G · ∇)F − (F · ∇)G

• ∇ × (∇× F ) = ∇(∇ · F )−∇2F
Let G = ∇ in the previous identity, and the result follows.

• ∇ · (rnr) = rn(3 + n)

∇ · (rnr) = ∂i(r
nr)i

= ∂ir
nri

= ri∂ir
n + rn∂iri

= ririnr
n−2 + rn∂iri

= rn∇ · r + r · ∇rn

= 3rn + r · nrn−2r
= 3rn + r2 nrn−2

= rn(3 + n)

• ∇ × (rnr) = 0

∇× (rnr) = εijk∂j(r
nr)k

= εijk (∂j(r
nrk))

= εijk(r
n∂irk + rk∂jr

n)

= ∇rn × r + rn∇× r
= ∇rn × r
= nrn−2 r × r
= 0
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2.5.3 Integral Identities

There are also some identities involving integrals that can be proven quickly using index
notation. Note that these proofs make use of the theorems shown in Section (2.6), but
they have been included here for the sake of neatness.

• Surface integral over a scalar �eld:(∫
∂V
ρ dS

)
i

=

∫
∂V
ρδij dSi

=

∫
V
∂iρδij dSi

=

∫
V
∂jρ dV

=

(∫
V
∇ρ dV

)
i

→
∫
∂V
ρ dS =

∫
V
∇ρ dV

• Vector surface product: (∫
∂V
dS × a

)
i

=

∫
∂V
εijkdSj ak

=

∫
V
εijk∂jak dV

=

(∫
∇× a dV

)
i

→
∫
∂V
dS × a =

∫
∇× a dV

• Line integral of scalar �eld:(∮
∂S
φ dl

)
m

=

∮
∂S
δimφ dli

=

∫
S
εijk∂jδkmφ dSi

=

∫
S
εijm∂jφ dSi

=

(∫
dS ×∇φ

)
m

→
∮
∂S
φ dl =

∫
dS ×∇φ
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2.6 Vector Calculus Theorems

There are three very useful theorems in vector calculus that can be used to simplify a large
variety of calculations.

2.6.1 Gauss' Theorem

Also know as the Divergence Theorem, this essentially allows us to turn a �ux integral over
a surface into a volume integral.

Let V be the volume of space that is bounded by ∂V . Then the total �ux of F through
∂V is equal to: ∮

∂V
F · dS =

∫
V
∇ · F dV (2.22)

This can often make calculations much easier as we do not have to compute the dot prod-
uct in the original integral.

Verify Gauss' Theorem by �nding the �ux the following �eld

F =
r̂

rα

over two concentric shells of radius r1 and r2.

We need to �nd both sides to (2.22) in this case. From the results in the previous section:

∇ · F =
2− α
rα+1∫

∇ · F dV =

∫
2− α
rα+1

r2 sin θ drdθdφ

= 4π
(
r2

2−α − r12−α
)

Now for the �ux integral: ∫
F · dS =

∫
r̂

rα
· r̂ r2 sin θ dφdθ

= 4π
[
r2r−α

]r2
r1

= 4π
(
r2

2−α − r12−α
)

We have thus veri�ed the divergence theorem as both sides of the equation give the same
result.

2.6.2 Stokes' Theorem

Let S be the oriented surface with a boundary curve ∂S. then the integral of F around
the boundary is given by: ∮

∂S
F · dl =

∫
S
∇× F · dS (2.23)

This allows us to turn a complicated line integral into a simple surface integral.

Use Stokes' Theorem to evaluate

I =

∮
C
A · dr
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where the square closed contour C has vertices at (−1, −1, 0), (1, −1, 0), (1, 1, 0), (−1, 1, 0)
and A = (yz − y, xz + x, xy − z).

Let us �rst compute ∇×A:

∇×A =

∣∣∣∣∣∣
e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

yz − y xz + x xy − z

∣∣∣∣∣∣
= (0, 0, 2)

As the region lies entirely inside the xy plane, this makes the resultant integral very easy
to compute. Using Stokes' Theorem:∮

C
A · dr =

∫
(∇×A) · dS

=

∫
(0, 0, 2) · (0, 0, 1) dS

= 2

∫
dS

= 2

∫ 1

−1
dx

∫ 1

−1
dy

= 8

2.6.3 Green's Theorem in a plane

The two-dimensional case of Green's Theorem states that:∮
∂S
Mdx+Ndy =

∫
S

(
∂N

∂x
− ∂M

∂y

)
dxdy (2.24)

where ∂S is the boundary of S.

Recall the result of (1.24). Greens' Theorem gives us an interesting result when we apply
this condition to the integrand of the left-hand side. Suppose that Mdx + Ndy is exact.
Then:

∂N

∂x
=
∂M

∂y

This means that: ∮
∂S
Mdx+Ndy = 0

Thus, for an exact di�erential, the closed integral around a loop is zero. We will cover this
is more detail in the next section.
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2.7 Line Integrals and Conservative Vector Fields

The reason that these two have been grouped together is because they are closely related
to one another.

2.7.1 Line Integrals

Line integrals allow us to compute the sum of the changes in the value of some vector �eld
F as it moves along some curve or path ∂S. They are generally of two forms:

I1 =

∫
∂S
F · dl

=

∫
∂S
Fxdx+ Fydy + Fzdz

or

I2 =

∫
∂S
F · dl

= x̂

∫
∂S
Fxdx+ ŷ

∫
∂S
Fydy + ẑ

∫
∂S
Fzdz

These generate a scalar and vector quantities respectively. In general, it helps to parametrise
both F and dl in terms of a single variable that we can evaluate the integral over. For
example, if we want to evaluate over a circle of radius a in the xy plane:

dl = (dx, dy, dz)

r(θ, z) = (a cos θ, a sin θ, z)

dr = adθ (− sin θ, cos θ, 0)

We can then perform the integration for 0 < θ < 2π when we have evaluated the dot
product F · dl.

2.7.2 Conservative Vector Fields

In general, the result of a path integral between A and B depends on the path of the
integration. However, there is a special case of vector �elds for which this is not the case.
They are known as conservative vector �elds. We have actually already encountered a few
of these, such as Newton's Law of Universal Gravitation or Coulomb's Law. Conservative
�elds have the property that: ∮

∂S
F · dl = 0 (2.25)

i.e the integral of a conservative �eld around a closed loop is always zero. Using Stokes'
Theorem: ∮

∂S
F · dl =

∫
S

(∇× F ) · dS

∇× F = 0

This means that F can be written as the gradient of some exact di�erential in order to
satisfy this result.

dφ =
∂Fx
∂x

dx+
∂Fy
∂y

dy +
∂Fz
∂z

dz
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→ F = ∇φ (2.26)

This leads to another result concerning conservative �elds:

∇φ = F

∇φ · dl = F · dl

≈
∫
F · dl

for a small change dl.

∇φ · dl ≈ dφ
= φ(b)− φ(a)

Hence we arrive at the �nal result of:∫ b

a
F · dl = φ(b)− φ(a) (2.27)

for a conservative �eld F . This is actually a very useful result, as it means that in order to
compute a line integral of a conservative �eld, we just have to �nd the scalar function φ.

Compute the line integral

I =

∫
F · dr

from a = (0, 0, 0) to b = (1, 1, 2) along some arbitrary curve, where F = (y3, 3xy2 +
yz2, zy2).

It is clear that ∇ × F = 0. We now need to �nd the corresponding φ. We can do this
by integrating each component of F with respect to the corresponding variable, and then
�nding the �nal result by inspection.

φx =

∫
y3dx

= y3x+ C1(z, y)

φy =

∫
3xy2 + yz2 dy

= xy3 +
1

2
y2z2 + C2(x, z)

φz =

∫
zy2dz

=
1

2
z2y2 + C(x, y)

The constants have been included to remind the reader that we are only doing integration
with respect to one of the variables; there may be constants that are functions of other
variables. Consequently:

φ = xy3 +
1

2
z2y2

→ I = 3
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3. Normal Modes and Waves

This chapter focusses on the basics of normal mode and wave theory, including:

• Normal Mode methods

• The Wave Equation

• Waves on a string

• Waves at Boundaries

• Dispersion

This section essentially deals with harmonic motion of many kinds, and generally it is
assumed that energy is conserved in these systems; we do not take account of damping.
Furthermore, the types of questions covered in this section are highly dependant on the
consideration of boundary conditions; always be thinking about how the problem might
be bounded or constrained when attempting such questions.
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3.1 Normal Mode Methods

A normal mode is a characteristic state of oscillation of a system around some state of
equilibrium. This kind of behaviour is encountered in a large variety of physical systems,
and the methods outlined in this chapter allow quite complicated systems to be charac-
terised solely by a set of normal mode frequencies. In general, normal modes represent
some sort of analogue of either constant motion of the centre of mass of the system, or
motion of the masses relative to the centre of mass of the system. Note that after su�cient
practise, solving these types of questions becomes quite formulaic as generally the same
process is followed each time.

In most cases, one has to solve for the equations of motion of the components of the system
by resolving forces using Newton's Second Law. In some rarer scenario's, it is more helpful
to consider the kinetic and potential energies of the system. Once these equations of motion
have been obtained, we can use two main methods to solve the problem.

3.1.1 Matrix Method

After obtaining the equations of motion, re-arrange the equations into a system of linear
equations, and substitute:

x1 = A1e
iωt and x2 = A2e

iωt (3.1)

for displacements x1 and x2 from equilibrium. This general method for solving coupled
equations is outlined in the notes on CP3. We then take the determinant of the coe�cient
matrix and set it to zero to obtain a valid solution to the homogeneous system. This will
give the normal modes of oscillation.

The general solutions are:

x1 = A1 cos(ω1t+ φ1) +A2 cos(ω2t+ φ2) (3.2)

x2 = A′1 cos(ω1t+ φ1) +A′2 cos(ω2t+ φ2) (3.3)

where ω1 and ω2 are the normal mode frequencies, and A1, A2, φ1 and φ2 are constants to
be determined from initial conditions. Note that we �nd A′1 and A′2 from the amplitude
ratios that we obtain from the equations of motion.

Let us consider an example. Two masses of equal mass m are placed at the same distance

l from either end of a string of total length 4l and negligible mass under a tension T . One
end E is driven harmonically at h(t) = ho cosωt . What are the normal mode frequencies

of oscillation? Express your answer in terms of wo =
√
T/2ml. Find the general solutions

for the masses. What happens when ω =
√

3ωo ?

As you can see, these questions are often very wordy to begin with, but after that the
methodology is pretty straight forward. Let us �rst consider a diagram of the situation.
By Newton's Second Law, let us equate vertical forces. We shall assume that the displace-
ments are transverse, and that θ1, θ2 and θ3 are su�ciently small such that sin θ ≈ tan θ.
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Figure 3.1: Masses on a driven string

For y1:

mÿ1 = T (sin θ2 − sin θ1)

≈ T (tan θ2 − tan θ1)

ÿ1 =
T

m

(
y2 − y1

2l
− y1

l

)
= ωo

2(y2 − 3y1)

For y2:

mÿ2 = T (sin θ3 − sin θ2)

≈ T (tan θ3 − tan θ2)

ÿ2 =
T

m

(
h− y2
l
− y2 − y1

2l

)
= ωo

2(3ho cosωt− 3y2 + y1)

Writing the equations as a system of linear equations:

ÿ1 + 3ωo
2y1 − ωo2y2 = 0

−ωo2y1 + ÿ2 + 3ωo
2y2 = 2ωo

2 ho cosωt

Making the substitutions outlined in (3.1), we arrive at the matrix equation:(
−ω2 + 3ωo

2 −ωo2
−ωo2 −ω2 + 3ωo

2

) (
A1

A2

)
=

(
0

2ωo
2

)
We require that the determinant of the coe�cient matrix is zero for a solution to this
system to exist.

(−ω2 + 3ωo
2)2 = ωo

4

−ω2 + 3ωo
2 = ±ωo2

w2 = 3ωo
2 ± ωo2

Hence:

ω1 =
√

2ωo

ω2 = 2ωo

A check that can always be done at this point to check whether these frequencies are
positive, as if they are not, then something has gone horribly wrong.
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Now we have to �nd the amplitude ratios. If we rearrange the �rst of the equations in the
matrix system:

(−ω2 + 3ωo
2)A1 − ωo2A2 = 0

A2

A1
=

1

ωo2
(−ω2 + 3ωo

2)(
A2

A1

)
1

=
1

ωo2
(−2ωo

2 + 3ωo
2)

= 1(
A2

A1

)
2

=
1

ωo2
(−4ωo

2 + 3ωo
2)

= −1

Thus, we can immediately write down the most general solutions for the homogeneous
motion of the two masses:

y1 = C1 cos(ω1t+ φ1) + C2 cos(ω2t+ φ2)

y2 = C1 cos(ω1t+ φ1)− C2 cos(ω2t+ φ2)

Let us now consider the steady-state motion of the two masses. For this, we need to solve
the inhomogeneous part of the matrix system. Use the trial substitutions of y1 = c1 cosωt
and y2 = c2 cosωt in the two equations for the system. Consequently:

c1(3ωo
2 − ω2) = ωo

2c2

c2(3ωo
2 − ω2) = ωo

2c1 + 2ωo
2ho

c2 =
2hoωo

4(3ωo
2 − ω2)

(2ωo2 − ω2)(4ωo2 − ω2)

c1 =
2ωo

4ho
(2ωo2 − ω2)(4ωo2 − ω2)

Lastly, we are asked What happens when ω =
√

3ωo ?

y1 =
2ωo

4ho
(−ωo2)(ωo)2

cosωt

= −2ho cosωt

= 2ho cos(ωt+ π)

y2 = 0

At this frequency, the second mass behaves like a �xed node while the �rst performs
oscillations at twice the amplitude but π out of phase with the driving force h(t).

3.1.2 Decoupling Method

This method is vastly less �exible than the matrix method (and is consequently less fre-
quently used) but can be a bit of a short-cut in some questions. The decoupling method

involves taking the sum, di�erence or other linear combination of the equations of motion
to obtain ordinary di�erential equations in the normal mode coordinates q1 and q2. We
can then �nd the solutions to the displacements x1 and x2 by taking the reverse linear
combination of the solved normal mode coordinates. For example:

q1 = (x1 + x2) and q2 = (x1 − x2) (3.4)

43



Toby Adkins CP2

Let us again consider an example. Two identical pendula consist of a light string of length

l attached to a mass m. They are joined by a spring of spring constant k. Find the normal

mode frequencies of the system.

Figure 3.2: Two identical pendula joined by a spring

We have to take into account the small-angle gravitational restoring force and the Hookean
restoring force due to the spring.

mẍ2 = −x2 sin θ2 − k(x2 − x1)
≈ −x2 tan θ2 − k(x2 − x1)

= −mg
l
x2 + k(x2 − x1)

mẍ1 = −mg
l
x1 + k(x2 − x1)

Taking the sum of these two equations:

m(ẍ1 + ẍ2) = −mg
l

(x1 + x2)

q̈1 +
g

l
q1 = 0

→ ω1 =

√
g

l

Taking the di�erence of these two equations:

m(ẍ1 − ẍ2) = −
(mg
l

+ 2k
)

(x1 − x2)

q̈2 + (
g

l
+

2k

m
)q2 = 0

→ ω2 =

√
g

l
+

2k

m

As you can see, in this case the decoupling method was much faster than the matrix
method, but as you can imagine, this only works for relatively simple systems.
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3.2 The Wave Equation

The rest of the material in this chapter essentially deals with solutions to a speci�c case
of the general wave equation related to waves on a string. In this section, we deal with it's
derivation and solution.

3.2.1 Derivation

Consider the small section of string shown in the diagram below:

Figure 3.3: A small section of stretched string

Begin by resolving forces vertically by Newton's Second Law and using the small angle
approximation sin θ ≈ tan θ for small angles θ.

T [sin θ1 − sin θ2] = m
∂2y

∂t2

T [tan θ1 − tan θ2] ≈ (ρδx)
∂2y

∂t2

= T

[(
∂y

∂x

)
1

−
(
∂y

∂x

)
2

]
Expanding

(
∂y
∂x

)
1
by the Taylor Series and keeping �rst order terms:(

∂y

∂x

)
1

=

(
∂y

∂x

)
2

+ δx
∂

∂x

(
∂y

∂x

)
T

[(
∂y

∂x

)
2

+ δx
∂

∂x

(
∂y

∂x

)
−
(
∂y

∂x

)
2

]
= (ρδx)

∂2y

∂t2

(Tδx)
∂2y

∂x2
= (ρδx)

∂2y

∂t2

Thus, we obtain the wave equation:

∂2y

∂x2
=
ρ

T

∂2y

∂t2
(3.5)

The waves on the string thus have speed c =
√
T/ρ = ω/k.
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3.2.2 D'Alembert's Solution

We know that the solution to the wave equation must be a function of displacement and
time; that y = y(x, t). Let us de�ne new variables u and v such that y can also be written
as a function of u and v.

u = x− ct
v = x+ ct

Using Leibnitz's Theorem (1.3):

∂2y

∂x2
=
∂2y

∂u2
+ 2

∂2y

∂u∂v
+
∂2y

∂v2

∂2y

∂t2
= c2

[
∂2y

∂u2
− 2

∂2y

∂u∂v
+
∂2y

∂v2

]
Substituting these results into the wave equation forces yuv = 0. This implies that in the
total derivative expression

dy =
∂y

∂u
du+

∂y

∂v
dv

∂y
∂u is a function only of u, and ∂y

∂v is a function only of v. We can thus write:

y =

∫
∂y

∂u
du+

∫
∂y

∂v
dv

= f(u) + g(v)

→ y = f(x− ct) + g(x+ ct)

Suppose that at t = 0 the initial displacement of the string is given by u(x) and the initial
velocity by v(x).

u(x) = f(x) + g(x)

v(x) = −cf ′(x) + cg′(x)

Integrating the second equation, and then solving for f(x) and g(x):

f(x)− g(x) =
1

c

∫ x

b
v(x) dx

g(x) =
1

2
u(x) +

1

2c

∫ x

b
v(x)dx

f(x) =
1

2
u(x)− 1

2c

∫ x

b
v(x)dx

Thus, the general solution for all time, given d'Alembert's method, is:

y(x, t) =
1

2
[u(x− ct) + u(x+ ct)] +

1

2c

[∫ x+ct

b
v(x)dx−

∫ x−ct

b
v(x)dx

]

y(x, t) =
1

2
[u(x− ct) + u(x+ ct)] +

1

2c

∫ x+ct

x−ct
v(x) dx (3.6)

Thus, given the initial conditions of the displacement and velocity of the string, we can
�nd the subsequent motion of the string for all time assuming that no energy is lost from
the system.
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3.2.3 Separation of Variables

In this method, we assume that the solution can be written as the product of two functions
that are dependant only on time and displacement respectively:

y(x, t) = g(x) f(t)

Substitute this in to the wave equation:

f(t) g′′(x) =
1

c2
g(x) f̈(t)

g′′(x)

g(x)
=

1

c2
f̈(t)

f(t)

This means that both sides must be equal to some separation constant, which for conve-
nience's sake we will call −k2. We thus obtain the following ordinary di�erential equations:

g′′(x) + k2 g(x) = 0

f̈(t) + c2k2 f(t) = 0

In general, the separated parts will have solutions:

g(x) = A cos kx+B sin kx (3.7)

f(t) = C cos kct+D sin kct (3.8)

Initial conditions can then be imposed on these solutions to �nd the subsequent displace-
ment of the string.
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3.3 Waves on a String

Given that we have derived the wave equation for waves on a string, there are some
properties and cases that we can derive alongside this result.

3.3.1 Energy of Oscillation

Consider again the in�nitesimally small section of string shown in Figure (3.3). Let the
length along the string between x and x+ dx be ds. First, let us derive an expression for
the kinetic energy:

KE =
1

2
(ρdx) ẏ2

=
1

2
ρdx

(
∂y

∂t

)2

→ KE =

∫
1

2
ρ

(
∂y

∂t

)2

dx (3.9)

Now for the potential energy. This is equal to the work done to stretch the string.

U = T (ds− dx)

ds =
√
dx2 + dy2

= dx

√
1 +

(
∂y

∂x

)2

≈ dx

(
1 +

1

2

(
∂y

∂x

)2
)

→ U =

∫
1

2
T

(
∂y

∂x

)2

dx (3.10)

Note that these two expressions are of equal magnitude for a wave that obeys the wave
equation as Tk2 = ρω2.

The power of the wave is the �ow of energy per unit time down the string.

Power =
Energy

Wavelength
× Distance Travelled

T ime

P =
1

2
ρA2ω2c

where A is the amplitude of the wave.

3.3.2 Standing Waves on a String

A standing wave on a string is formed from the superposition of two waves of equal am-
plitude travelling in opposite directions:

y(x, t) = Ao cos(ωt+ kx) +Ao cos(ωt− kx)

= 2Ao sin kx cosωt
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This can only occur when both ends of the string are �xed. Suppose that the string has
length L. We need to impose the conditions that y(0, t) = 0 and y(L, t) = 0.

sin kL = 0

kL = nπ

k =
nπ

L

This means that the frequencies of the normal mode standing waves are given by:

ωn =
cnπ

L
(3.11)

for integer n 6= 0. This condition can also be derived from the solutions in (3.8) by im-
posing the condition that the string is initially at rest (∂y/∂t = 0) before dealing with the
condition on the ends.

Given some initial displacement of the string, one �nds the subsequent evolution of the
string by simply multiplying by the corresponding time-varying amplitude for each of the
normal modes involved.

The initial velocity of a string �xed at x = 0 and x = L is given by

∂y

∂t
(x, 0) = vo sin5

(πx
L

)
If at t = 0 it is initially in it's equilibrium position, �nd the subsequent displacement of the

string.

We need to decompose this initial velocity into a series of normal mode velocities, as then
the remainder of the problem becomes relatively straight forward. We can do this quite
easily with complex numbers. Recall that:

sin θ =
1

2i

(
eiθ − e−iθ

)
sin5 θ =

1

24
· 1

2i

(
eiθ − e−iθ

)5
=

1

24
· 1

2i

((
e5iθ − e−5iθ

)
− 5

(
e3iθ − e−3iθ

)
+ 10

(
eiθ − e−iθ

))
=

1

24
(sin 5θ − 5 sin 3θ + 10 sin θ)

We have thus found that the initial velocity of the string involves components corresponding
to the n = 1, n = 3 and n = 5 normal modes.

∂y

∂t
(x, 0) = vo sin5

(πx
L

)
=
vo
16

(
sin

(
5πx

L

)
− 5 sin

(
3πx

L

)
+ 10 sin

(πx
L

))
∂y

∂t
(x, t) =

vo
16

(
sin

(
5πx

L

)
cos

(
5πct

L

)
− 5 sin

(
3πx

L

)
cos

(
3πct

L

)
+ 10 sin

(πx
L

)
cos

(
πct

L

))
y(x, t) =

vo L

80πc
sin

(
5πx

L

)
sin

(
5πct

L

)
− 5vo L

48πc
sin

(
3πx

L

)
sin

(
3πct

L

)
+

5vo L

8πc
sin
(πx
L

)
sin

(
πct

L

)
This is the �nal solution for the subsequent displacement of the string.
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Let us now examine the energy of the string. We have already found that a standing wave
on a �xed length L is of the form:

yn(x, t) = An sin
(nπx
L

)
cos

(
nπct

L

)
(3.12)

If we substitute (3.12) into (3.9) and (3.10), we �nd that:

KEn =
ρ An

2 (nπc)2

4L
sin2

(
nπct

L

)
Un =

T An
2 (nπ)2

4L
cos2

(
nπct

L

)
Adding these two together, it becomes clear that the energy for each normal mode is
constant in time, and equal to:

En =
ρ c2 (Anπn)2

4L
(3.13)

The energy of the string, when more than one normal mode is present, is just the sum of
the energies in all the normal modes. This should be conserved, assuming that the string
is isolated and not damped.
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3.4 Waves at Boundaries

When a travelling wave encounters some sort of boundary (whether on a string or other-
wise), the boundary has some e�ect on the propagation of said wave. It may re�ect some
of the energy, reduce the amplitude of the wave, or have a variety of other e�ects.

3.4.1 Boundaries on a string

Below are a variety of examples of some of the boundaries that a wave might be able to
encounter when it is constrained to travel on a string. We shall assume that the frequency
of the waves is unchanged at the boundaries, as well as the fact that energy is conserved.
Note that we will not go through the derivations for all the results (just the �rst one) as
the method very similar for all of them.

• Density Boundary - Suppose that two strings of di�erent densities are attached at
x = 0. In this case, we require that the string remains continuous; this means that
each string section must have the same displacement, and gradient at the join. This
results in the boundary conditions of

y
∣∣∣
x=0−

= y
∣∣∣
x=0+

(3.14)

∂y

∂x

∣∣∣
x=0−

=
∂y

∂x

∣∣∣
x=0+

(3.15)

We can then use these conditions to �nd the behaviour of the wave at the join.

Suppose that a travelling wave of amplitude A1 travels from x = −∞ along a semi-

in�nite string of density ρ1. At x = 0 it encounters a second semi-in�nite string of

density ρ2. Find the amplitudes of the transmitted and re�ected waves.

To solve this problem, we need to solve for A2 and A3 in the following three waves:

1. Incident: y1 = A1 e
i(ωt−k1x)

2. Re�ected: y2 = A2 e
i(ωt+k1x)

3. Transmitted: y3 = A3 e
i(ωt−k2x)

We have included di�erent wave-numbers for the waves travelling in di�erent densi-
ties as wave-number is related to density by k = c−1

√
ρ/T . Note that the exponents

of (1) and (2) di�er solely by a sign; this is because the re�ected wave travels towards
−∞ while the incident wave is originally travelling towards +∞.

Substituting these waves into (3.15), where y1 and y2 correspond to x = 0− and y3
corresponds to x = 0+, we obtain (after some cancellation):

A1 +A2 = A3

−k1A1 + k1A2 = −k2A3

Solving these two equations simultaneously, we obtain the amplitudes of the re�ected
and transmitted waves as:

A reflected

A incident
=
k1 − k2
k1 + k2

(3.16)

A transmitted

A incident
=

2k1
k1 + k2

(3.17)
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Now it is worth considering a couple of limiting cases.

� ρ2 = 0 - This essentially corresponds to not having a second string; this means
that all the energy must be re�ected at the boundary, and so the amplitude and
phase of the re�ected wave are the same.

A transmitted → 0

A reflected → A incident

� ρ2 = ρ1 - This means that there is no boundary to disturb the wave, and so it
just passes through as expected with no phase or amplitude change.

A transmitted → A incident

A reflected → 0

� ρ2 → ∞ - This is the "brick wall" scenario. As no energy can pass onto the
second string, it is all re�ected, but in this case, there is a phase change of π.

A transmitted → 0

A reflected → −A incident

• Terminated by a mass - In this case, we need to equate the force on the mass due to
the incident wave and the acceleration it feels by Newton's Second Law. This results
in the condition that:

T
∂y

∂x

∣∣∣
x=0−

= m
∂2y

∂t2
(3.18)

For an incident wave travelling on a semi-in�nite string from x = −∞ towards x = 0,
this yields:

A reflected

A incident
= eiφ (3.19)

φ = 2 tan−1
(
kT

mω2

)
(3.20)

Evidently, there are no transmitted waves as the string ends with the mass. This
means all the energy is re�ected, but a complex phase φ is introduced. Note the
limiting cases:

� m→∞ , φ→ 0

� m→ 0 , φ→ π

These agree with the limiting cases discussed above.

• 'Forced' Mass Boundary - Suppose that we have a mass attached to two strings of
the same density at x = 0 that is itself attached to a spring of spring constant s.
We have opted not to use the conventional k here because we are using it to refer to
wave-number. Once again, we need to equate forces at the boundary:

T

(
∂y

∂x

∣∣∣
x=0−

− ∂y

∂x

∣∣∣
x=0+

)
= m

∂2y

∂t2
+ sy (3.21)

Again, for an incident wave travelling on a semi-in�nite string from x = −∞ towards

x = 0, this yields:

A reflected

A incident
=

(k1 − k2)T − i(mω2 − s)
(k1 + k2)T + i(mω2 − s)

(3.22)

A transmitted

A incident
=

2Tk1
(k1 + k2)T + i(mω2 − s)

(3.23)
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For the case where s = 0, we obtain the case if we just had a mass attached at the
boundary of the two strings.

• 'Triple Boundary' - This is more of an excuse to include a question rather than be
particularly illustrative. The following has mostly been left as an exercise for the
reader, with a few hints thrown in. Be warned; this is quite an algebraically heavy
question.

A wave of unit amplitude travels towards x = +∞ from x = −∞ along a semi-

in�nite string of density ρ1. At x = 0 it encounters a second string of density ρ2 that
is itself attached to another string of density ρ3 at x = a. For a = λ2 (where λ2 is

the wavelength of the waves in the middle section), show that there is no re�ection

at the initial boundary, and �nd the amplitude of the wave transmitted to x = +∞.

The starting point when tackling this question should be to impose the conditions
shown in (3.15) both at x = 0 and x = a, requiring us to solve for 5 amplitudes
(chugging through the simultaneous equations is where the maths gets heavy). We
can also use the condition that a = λ2 to simplify this a little as:

e±ik2a = e
±i 2π

λ2
λ2 = e±i 2π = 1

The answer for the amplitude turns out to be:

A Final =
2k1

k1 + k3

It is as if the wave 'skips' the middle section.

3.4.2 Boundaries in Circuits

What? There are boundaries in circuits? The response is evidently yes, and this is be-
cause we can model 'current' and 'voltage' waves within circuits that can encounter an
impedance or resistance. First, let us derive the relevant wave equations.

Consider a circuit of capacitance per unit length C and inductance per unit length L. The
voltage drop due to the inductance over a small distance δx is given by Faraday's Law:

δV = −(Lδx)
∂I

∂t

→ ∂V

∂x
= −L∂I

∂t

The voltage drop due to capacitance over δx is given by:

δV = − 1

C

∂Q

∂x

→ C
∂V

∂t
= −∂I

∂x

These are known as the telegraph equations. If we di�erentiate each equation appropriately
and substitute into one another, we arrive at:

∂2V

∂x2
= LC

∂2V

∂t2
(3.24)

∂2I

∂x2
= LC

∂2I

∂t2
(3.25)
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where c = 1/
√
LC.

The characteristic impedance for a circuit is de�ned as:

Z ≡ Vo
Io

= ±
√
L

C
(3.26)

Suppose that these waves encounter an impedance boundary of terminating impedance zT .
Here, the ratio of V/I must equal the terminating impedance. Let the incident amplitude
be A and the re�ected amplitude be A′.

V = Aei(ωt−kx) +A′ei(ωt+kx)

ZoI = Aei(ωt−kx) −A′ei(ωt+kx)

ZT =
V (0, t)

I(0, t)

ZT
Zo

=
A+A′

A−A′

This means that the re�ected wave amplitude is given by:

AReflected

A Incident
=
ZT − Zo
ZT + Zo

(3.27)

Let us consider some limiting cases:

� ZT = 0 - All the energy is re�ected with a phase shift of π.

A reflected → −A incident

� ZT = Zo - No energy is re�ected. This is called matched impedance, where all the
power is transmitted to the terminating load.

A reflected → 0

� ZT →∞ - All the energy is re�ected but with no phase shift.

A reflected → A incident

54



Toby Adkins CP2

3.5 Dispersion

A dispersive medium is on in which di�erent frequencies are transmitted at di�erent speeds.
This is responsible for e�ects such as the dispersion of light by prisms, as di�erent wave-
lengths are di�racted by di�erent amounts. We have two characteristic speeds associated
with waves in dispersive media:

3.5.1 Phase Velocity (vp)

This is the speed of an individual wavelength in a medium.

vp =
ω

k
(3.28)

This may actually be greater than the speed of light, but this does not violate causality as
the information of a wave is actually transmitted with the Group Velocity that is always
less than the speed of light.

3.5.2 Group Velocity (vg)

This is the speed at which the 'envelope' compromising of di�erent frequencies travels,
though the envelope may vary with time. Consider two waves y1 and y2 that have the
same amplitude but di�er in frequency and wave-number by a small amount:

y1 = A sin((k + δk)x− (ω + δω)t)

y2 = A sin((k − δk)x− (ω − δω)t)

Finding the resultant wave from the superposition of the two waves:

y = y1 + y2

= 2A cos(δkx− δωt) sin(kx− ωt)

Thus, the wave packet moves at c = δω/δk for the superposition of two waves. For a large
number of waves, this becomes:

vg =
dw

dk
(3.29)

We can prove this more generally by considering the superposition of waves using an
integral:

y(x, t) ∝
∫
yk e

i(kx−ω(k)t) dk

=

∫
yk e

if(k) dk

The wave packet will be stable for ∂f(k)/∂k.

∂f

∂k
= 0

x− ∂w

∂t
t = 0

vp =
x

t
=
∂ω

∂k

There are some useful expression for vg that we can �nd by manipulation of it's original
de�nition.
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• In terms of vp and wave-number k :

vg =
d

dk
(vp k)

→ vg = vp + k
dvp
dk

• In terms of vp and wavelength λ :

k =
2π

λ

dk = −2π

λ2
dλ

→ vg = vp − λ
dvp
dλ

• In terms of the refractive index n, the speed of light in a vacuum c and wavelength
λ :

vp =
c

n
dvp
dn

= − c

n2

vg =
c

n
− λ d

dλ

(
− c

n2
dn
)

=
c

n
+
c

n

(
d

dλ
· dn
n

)
→ vg =

c

n

(
1 +

λ

n

∂n

∂λ

)
• In terms of the refractive index n, the speed of light in a vacuum c and frequency ω :

c

n
=
w

k

k =
ωn(w)

c
1

vg
=

d

dw
(k)

=
d

dk

(
ωn(w)

c

)
→ 1

vg
=
n

c

(
1 +

ω

n

∂ω

∂n

)
The utility of each of these depends on the dispersion relation involved. For all physical
media, phase and group velocity should obey the relation:

vgvp = c2 (3.30)

3.5.3 Local Wave-number and Frequency

Thus far, we have assumed that ω and k are constant throughout space for a given wave.
What happens if we introduce local frequency and wave-number? For y = Aeiθ:

θ = k̄x− ω̄t+ θo

= k(x, t) x− ω(x, t) t+ θo
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For this to be solution to the wave equation:

∂θ

∂x

!
= k

∂θ

∂x
≈ k +

∂k

∂x
x

∂θ

∂t

!
= ω

∂θ

∂t
≈ ω +

∂ω

∂t
t

This means that we require for both k(x, t) and ω(x, t) to be slowly, varying:

∂k

∂x
=
∂ω

∂t
≈ 0

Furthermore, we require that

dθ = k̄ dx− ω̄ dt+ θo

is a total di�erential. This gives:

∂k̄

∂t
+
∂ω̄

∂x
= 0

Assuming that ω = ω(k):

∂ω̄

∂x
=
∂k̄

∂x

∂ω̄

∂x

= vg
∂k̄

∂x

This leads to the wave conservation equations for local wave-number and frequency:

∂k̄

∂t
+ vg

∂k̄

∂x
= 0 (3.31)

vg
∂ω̄

∂t
+
∂ω̄

∂x
= 0 (3.32)

3.5.4 A Dispersion Relation example

This is just an example of a harder dispersion relation question, though it is illustrative of
quite a few useful techniques.

Suppose that

φ = a
[
ei(ωt−kx) + ei(ω

′t−k′x)
]

In a certain dispersive medium φ obeys the equation

τ
∂

∂t

(
∂2φ

∂t2
− c12

∂2φ

∂x2

)
+
∂2φ

∂t2
− co2

∂2φ

∂x2
= 0

for c1 < co. Show that a disturbance with frequency ω � 1/τ travels with phase velocity

co, and that it's amplitude decreases by a factor

≈ exp

[
−πωτ

(
c1

2

co2
− 1

)]
(3.33)
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Let δ = i(ωt− kx) and δ′ = i(ω′t− k′x). With careful di�erentiation and substitution into
the dispersion relation, it can be shown that:

τaieδ(ωc1
2k2 − ω3) + τaieδ

′
(ωc1

2k′
2 − ω′3) + aeδ(co

2k2 − ω2) + aeδ
′
(co

2k′
2 − ω′2) = 0

Considering the part of the wave with frequency ω � 1/τ :

τaieδ(ωc1
2k2 − ω3) + aeδ(co

2k2 − ω2) = 0

As τ , a and eδ are all non-zero, this means that both the real and imaginary parts must
be zero for this relation to hold:

co
2k2 − ω2 = 0

ω2 = co
2k2

ω = ±cok
ω

k
= ±co

vp = ±co

Hence a wave with frequency ω travels with a phase velocity co. Letting ω = ωo + δω =
±cok + δω in (3.33).

iτ(ωo + δω)3 − iτk2c12(ωo + δω) + (ωo + δω)2 − k2co2 = 0

As τω � 1 and τδω � 1, we can neglect small terms:

iτ(ωo)
3 − iτk2c12(ωo) + 2ωoδω + ωo

2 − co2k2 = 0

iτ(ωo)
3 − iτk2c12(ωo) + 2ωoδω = 0

δω =
1

2
iτ(k2c1

2 − ωo2)

=
1

2
iτ(k2(c1

2 − co2)

=
1

2
iτω(kco)

(
c1

2

co2
− 1

)
→ δω = iτπω

(
c1

2

co2
− 1

)
Now considering the form of φ:

φ = aei(ωt−kx)

= aei((ωo+δω)t−kx)

= aeiδωt · ei(ωot−kx)

The amplitude decay term is thus:

ad = eiδωt

= e
i

(
iτπω

(
c1

2

co2
−1

))
t

= e
−
(
τπω

(
c1

2

co2
−1

))
t

Note that this is only the �rst order approximate solution to the problem.
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