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3 Interference and Diffraction 
3.1 Introduction 
Interference is the superposition of two or more 
harmonic waves meeting in space. If there is a phase 
difference of 0 (or 2𝑛𝜋 where 𝑛 is an integer) 
constructive interference occurs. On the other hand 
a phase difference of  (2𝑛 + 1)𝜋 leads to destructive 
interference.  We will see later how we can use 
phasors to help see what is happening. 

Diffraction occurs when a wave is partially 
obstructed and it ‘bends round’ such obstructions.  
The effect is only noticeable when the size of the 
diffracting obstacle is comparable to the  
wavelength 𝜆.  

It can be understood using the same Huygens’ 
Principle as before: imagine the unobstructed part of 
the wave acts as a set of sources of secondary 
wavelets and then superpose all the resulting waves, 
taking account both of their amplitude and phase. 

 

3.2 Young’s Double Slits 

So far in 1A you showed that light is also a transverse 
wave obeying a wave equation for the electric field. 
The Young’s slits configuration shows the wave 
properties and consists of two identical and very 
narrow slits separated by a distance 𝑑.  Each slit acts 
as a single source of secondary wavelets.  In order to 
work out the resultant distribution of light, we need 
to sum the two wavelets, one originating from each 
slit and which have equal amplitudes.  We will 
assume the incident wave is a plane wave normal to 
the slits so that the two secondary sources are in 
phase at the aperture.  We want to work out the 
diffraction pattern observed on some very distant 
screen, distance 𝑅 away.   

• When the path difference 𝑑 sin 𝜃 is an 
integral number of wavelengths, 
corresponding to a phase difference of 2𝑛𝜋 
there is constructive interference leading to 
maximum amplitude. 
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• When the path difference is (𝑛 + 1

2
)𝜆, 

corresponding to a phase difference of  
(2𝑛 + 1)𝜋, destructive interference occurs 
and there is zero (minimum) amplitude.  

We will consider the case where the distance to the 
screen 𝑅 is much greater than the slit spacing 𝑑.  We 
want to evaluate the intensity at some point P on the 
screen. 

   𝑟2 ≈ 𝑟1 + 𝑑 sin 𝜃 
By superposing the waves arriving at P from the two 
slits, we find the resultant 𝜓𝑝 is given by 

𝜓𝑝 = 𝐴 cos[𝜔𝑡 − 𝑘𝑟1] + 𝐴 cos[𝜔𝑡 − 𝑘𝑟2] 

      = 𝐴 cos[𝜔𝑡 − 𝑘𝑟1]
+ 𝐴 cos[𝜔𝑡 − 𝑘(𝑟1 + 𝑑 sin 𝜃)] 

𝜓𝑝 =  2𝐴 cos [𝜔𝑡 − 𝑘𝑟1 + 𝑘 (
𝑑

2
) sin 𝜃] cos [𝑘 (

𝑑

2
) sin 𝜃] 

This means that the intensity at P is 
 ∝ cos2[𝑘(𝑑/2) sin 𝜃] (the first cos2 term averages 
out over time) and this is seen to oscillate in 
amplitude with angle.  The intensity at P (see 1A 
Gravitational and Electromagnetic Fields) 

𝐼𝑃 ∝ 𝜓𝑝
2 ∝ cos2[𝑘(𝑑/2) sin 𝜃] 

Changing 𝜃 as we move across the screen leads to 
alternating regions of light and dark, the intensities 
varying as cos-squared.  Thus fringes are seen and 
the successive maxima occur when 

cos[𝑘(𝑑/2) sin 𝜃] = ±1 

⇒
𝑘𝑑 sin 𝜃

2
= 𝑛𝜋 

⇒ sin 𝜃 =
2𝑛𝜋

𝑘𝑑
=

2𝑛𝜋

𝑑

𝜆

2𝜋
=

𝑛𝜆

𝑑
  

For the case of small 𝜃 (so sin 𝜃 ≈ tan 𝜃 ≈ 𝜃) , the 
angular separation of successive fringes is given by 
𝜆/𝑑, corresponding to a linear separation of 𝑅𝜆/𝑑 on 
the screen. The ‘order’ of the maxima is given by 𝑛.  
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3.3 Phasor Diagrams 

Phasor diagrams provide a graphical way to sum 
amplitudes. We can use them explicitly to work out 
the resultant in the above Young’s slit experiment. In 
this case we need to evaluate the sum of two 
oscillations with equal amplitudes and the same 
frequency. The phases of these two waves are given 
by 
    𝜔𝑡 − 𝑘𝑟,   𝜔𝑡 − 𝑘𝑟 + 𝑘𝑑 sin 𝜃.    
We are only interested in the time averages, so we 
set     𝜔𝑡 − 𝑘𝑟 = 0.  
 
As 𝜃 varies, so does the resultant amplitude. Maxima 
occur when 𝑘𝑑 sin 𝜃 = 2𝑛𝜋, and the contributions 
are in phase. Conversely minima occur when   
𝑘𝑑 sin 𝜃 = (2𝑛 + 1)𝜋.  Then the contributions are 
out of phase and the net sum is zero. 
 
3.3.1  Young’s Slit Experiment using Phasors 
We can use phasors to look again at the solution to 
the Young’s slit problem. 
 
In the diagram, we can use the cosine rule to work 
out the resultant wave amplitude 𝜓𝑝. However what 

we measure is the intensity of light, given by 
𝜓𝑝

2 = 𝐴2 + 𝐴2 − 2𝐴2 cos(𝜋 − 𝜙) 

                            = 𝐴2 + 𝐴2 + 2𝐴2 cos 𝜙 
                            = 2𝐴2(1 + cos 𝜙) 
In this diagram, 𝜙 is the phase difference between 
the two slits, so 𝜙 = 𝑘𝑑 sin 𝜃 and it is the total 
length of the vector which is important, 

𝜓𝑝
2 = 4𝐴2 cos2 (

𝜙

2
) = 4𝐴2 cos2 (

𝑘𝑑 sin 𝜃

2
) 

As before, when we worked it out explicitly, we see 
the intensity 𝜓𝑝

2 exhibits cos2 fringes. 

Example 

Two narrow slits separated by 1 mm, are illuminated 
by light of wavelength 600 nm and the interference 
pattern is viewed on a screen 2 m away. Use the 
phasor method to indicate how you can deduce the 
positions of successive minima and find the linear 
separation of these minima on the screen. 

  

  

  
𝜔𝑡 − 𝑘𝑟 

𝜙 
𝜋 − 𝜙  

Phasors rotate 

counterclockwise 

 𝐴 cos 𝜔𝑡                                      
x 

𝐴 

𝐴 

𝜓𝑝 

 𝐴 cos(𝜔𝑡 + 𝜙)                                      
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The relative phase between light from the two slits is 
given by 𝑘𝑑 sin 𝜃. Looking at the phasor diagrams we 
can see that the first minimum occurs when  

𝑘𝑑 sin 𝜃 = 𝜋    ⇒    
2𝜋

𝜆
𝑑 sin 𝜃 = 𝜋     

⇒    sin 𝜃 =
𝜆

2𝑑
 

The second minimum will be when 

𝑘𝑑 sin 𝜃 = 3𝜋       ⇒    sin 𝜃 =
3𝜆

2𝑑
 

If 𝜃 ≪ 1 then the angular separation of minima is 
given by  𝜆/𝑑 , leading to a separation of minima on 
screen given by 

𝑅𝜆

𝑑
=

2 × 600 × 10−9

1 × 10−3
= 1.2 × 10−3m 

 

3.4  Diffraction Gratings 

The same arguments can now be used to discuss 
another common situation, in which there are many 
slits.  This is known as a diffraction grating.  

• Suppose there are 𝑁 slits.  There will be 
constructive interference if the path 
difference between successive slits is an 
integral number of wavelengths.   

• This leads to regions of maximum amplitude 
whenever  𝑑 sin 𝜃 = 𝑛𝜆. 

• The order of the maximum is given by 𝑛, so 
when 𝑛=0 we have the zeroth order 
maximum, while  𝑛=1 corresponds to the first 
order maximum etc. 

 

 

 

 

𝑑 sin 𝜃 

𝑑 

𝜃 
A 

B 

𝜓𝐴 𝜓𝐵 

𝑘𝑑 sin 𝜃 

𝜓𝐴 𝜓𝐵 

𝑘𝑑 sin 𝜃 
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As before, we can use a phasor diagram to evaluate 
the intensity at points on the screen.  In this case we 
need to superpose the oscillations at a point P on the 
screen, each with equal amplitude, 𝐴, and the same 
frequency, and with phases given by 

𝜔𝑡 − 𝑘(𝑟 − 𝑚𝑑 sin 𝜃) = 𝜔𝑡 − 𝑘𝑟 + 𝑚𝛿 

In this expression, 𝑚  is an integer with values from 
0 to 𝑁–1  and 𝛿 = 𝑘𝑑 sin 𝜃.  In this case the phasor 
diagram is a section of a polygon as shown.  

Maxima will occur whenever all the vectors add in 
phase.  This requires that  

𝛿 = ±2𝑛𝜋    ie.  𝑘𝑑 sin 𝜃 = 2𝑛𝜋   or  𝑑 sin 𝜃 = 𝑛𝜆  

• Positions of maxima will be wavelength 
dependent.   

• Positions of the maxima do not depend upon 
the number of slits, although their sharpness 
(or narrowness) and intensity do.   

• From the phasor diagram it should be clear 
that the intensity varies as 𝑁2.   

• The sharpness is determined by the value of 
𝛿 for which the resultant goes to zero for the 

first time ie when 𝛿 = 𝑘𝑑 sin 𝜃 =
2𝜋

𝑁
 which 

implies that sin 𝜃 =
𝜆

𝑁𝑑
 

• Hence the width of each maximum is 
proportional to 1/𝑁.  

Zeros (minima) occur whenever 𝛿 = 2𝑝𝜋/𝑁 (𝑝 an 
integer which is not a multiple of 𝑁). This implies 
there are 𝑁–1 minima and 𝑁–2 subsidiary maxima 
between principal maxima; the subsidiary maxima 
are very weak compared with the principle maxima.  
As the number of slits 𝑁 is increased, the principal 
maxima become sharper and more intense, and the 
intensities of the subsidiary maxima become 
negligible by comparison. 

Diffraction gratings are used to investigate 
wavelengths and shapes of spectral lines – the 
greater 𝑁 the greater the detail observed. 
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Example 

A diffraction grating with slit spacing 𝑑 is used to 
analyse the spectrum emitted by a gas.  

(i) What is the angular separation in the 𝑛th order 
spectrum of two lines of wavelength 𝜆1 and 𝜆2 (𝜆2 >
𝜆1)?   

(ii)  What is the minimum width of the grating 
required to resolve these two lines (i.e. to see them 
clearly as two distinct lines) in the first order 
spectrum?   

(iii)  The sodium D-lines have wavelengths of 589.00 
and 589.59 nm.  A diffraction grating with 2000 lines 
per centimetre is to be used to resolve these lines in 
the first-order spectrum. What width must the beam 
of sodium light have when it falls on the grating? 
(You may assume all angles are very small so 
 sin 𝜃 ≈ 𝜃).  

 

(i) In general for the 𝑛th order maximum 

sin 𝜃 =
𝑛𝜆

𝑑
 

⇒   sin 𝜃1 = (𝑛𝜆1)/𝑑         and    sin 𝜃2 = (𝑛𝜆2)/𝑑  

Δ𝜃 =
𝑛(𝜆2 − 𝜆1)

𝑑
 

(ii) The criterion that two lines can be resolved from 
each other is that: at that their minimum separation 
the maximum of one line lies over the first zero of 
the other –  this is known as the Rayleigh Criterion. 
Thus 

𝜆2

𝑑
−

𝜆1

𝑑
=

𝜆1

𝑁𝑑
         ⇒   𝑁 =

𝜆1

𝜆2 − 𝜆1
  

Thus the required width 𝑤 is given by 

𝑤 > 𝑁𝑑 =
𝜆1

𝜆2 − 𝜆1
𝑑 
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iii) First order spectrum, so 𝑛=1. Using the Rayleigh 
criterion, the number of slits the beam must 

illuminate is 𝑁 =
𝜆1

𝜆2−𝜆1
  

The slits are a distance 𝑑 apart where 

𝑑 =
10−2

2000
 m 

Thus the width of the beam of sodium light must be 

𝑁𝑑 =
𝜆1

𝜆2 − 𝜆1
𝑑 =

589.00 × 10−9

0.59 × 10−9
×

1

2 × 105
 m 

             = 4.9 × 10−3m 

Thus the beam must be about 5 mm wide. 

 
3.5 Slit of Finite Width 
3.5.1 Phasor Approach 

Consider a slit of width 𝑎, which we can imagine as 
divided into 𝑁 equal intervals. Using Huygen’s 
Principle we then assume a secondary wavelet starts 
at the midpoint of each of these, and we can sum the 
effect of all these at a point P on some distant screen 
using phasors. The total phase difference between 
the top and bottom of  the slit is 𝑘𝑎 sin 𝜃. 

When 𝑁 is very large the phasor diagram for 
calculating the resultant amplitude tends to an arc, 
and the chord gives us the resultant. Then 

sin (
𝜙

2
) =

𝐴/2

𝑟
    so     𝐴 = 2𝑟 sin (

𝜙

2
) 

where 𝑟 is the radius of the arc. 

The length of the arc is 𝑁𝐴0, where 𝐴0 is the 
amplitude due to a single source.  
So 𝜙 = 𝑁𝐴0/𝑟 = 𝐴𝑚𝑎𝑥/𝑟  and  

𝐴 =
2𝐴𝑚𝑎𝑥

𝜙
sin (

𝜙

2
) = 𝐴𝑚𝑎𝑥

sin(𝜙/2)

𝜙/2
= 𝐴𝑚𝑎𝑥 sinc(𝜙/2) 

This gives us the definition of the sinc function as  

sinc 𝑥 = sin 𝑥 /𝑥 
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The behaviour of the sinc function is shown in the 

diagrams. Minima occur whenever 𝜃 =
𝑛𝜆

𝑎
.  

 

 

 

As 𝜃  is varied, corresponding to moving across the 
screen, the total amplitude goes through alternating 
maxima and minima.  The maxima decrease in 
amplitude as 𝜙 increases.  There is a minima every 
time 𝜙 = 2𝑛𝜋. This gives us the condition  

𝑘𝑎 sin 𝜃 = 2𝑛𝜋 or equivalently   
2𝜋

𝜆
𝑎 sin 𝜃 = 2𝑛𝜋.  

So  

sin 𝜃 ∼ 𝜃 =
𝑛𝜆

𝑎
 

 

On axis there will always be a maximum since all 
contributions are in phase. 
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3.5.2 Slit of Finite Width via Integration 

Considering phase differences relative to the middle 
of the slit C, the phase difference for A is 
−𝑘(𝑎/2) sin 𝜃, and for B is +𝑘(𝑎/2) sin 𝜃. In 
general the phase difference is 𝑘𝑥 sin 𝜃 and we use 
𝜙 = 𝑘𝑎 sin 𝜃.  

The maximum amplitude 𝐴𝑚𝑎𝑥 = 𝐴0𝑎, where 𝐴0 is 
the amplitude per unit length of the slit. We add 
waves from each small section of the slit 𝑑𝑥. We can 
then integrate all the contributory wavelets across 
the slit to give the total amplitude at P as: 

𝐴𝑃 = 𝐴0 ∫ exp(𝑖𝑘𝑥 sin 𝜃) 𝑑𝑥

+𝑎/2

−𝑎/2

 

   =
𝐴0

𝑖𝑘 sin 𝜃
[exp(𝑖𝑘𝑥 sin 𝜃)]−𝑎/2

+𝑎/2
 

  =
𝐴0

𝑖𝑘 sin 𝜃
[exp(𝑖𝑘(𝑎/2) sin 𝜃)

− exp(−𝑖𝑘(𝑎/2) sin 𝜃)] 

  =
2𝐴0

𝑘 sin 𝜃
sin[𝑘(𝑎/2) sin 𝜃] 

Hence 

𝐴𝑃 =
2𝐴𝑚𝑎𝑥

𝑎𝑘 sin 𝜃
sin[𝑘(𝑎/2) sin 𝜃] 

    = 𝐴𝑚𝑎𝑥 sinc[𝜙/2] 

 

x 


