
NST Part IA Physics Lent 2024

OSCILLATING SYSTEMS

N. C. Greenham

Examples Sheet

There are 24 problems on this Examples Sheet covering the 12 lectures on Oscillating Systems
in the Lent Term.

At the end of this sheet a number of tripos questions relating to the material covered in this part
of the course are also listed for you to try. You may find these helpful to give you practice in
answering Tripos standard questions and for revision purposes. [Questions numbered with an
‘A’ prefix would each need to be answered in about 10 minutes under examination conditions
and those labeled with ‘B’ or ‘C’ prefixes would need to be answered in around 25-30 minutes
each].

For those who are interested, there are some strictly optional additional problems – less
structured and usually of a slightly more mathematical nature – which can be downloaded
from TiS.

If you find any errors please contact the lecturer, Prof. Neil Greenham (ncg11@cam.ac.uk).
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Simple harmonic motion

1. A 1.0 kg object is attached to a horizontal spring. The spring is initially stretched by
0.10m, and the object is released from rest there. It proceeds to move without friction.
The next time the speed of the object is zero is 0.5 s later. What is the maximum speed
of the object?

2. (a) A mass m is supported from a light spring with spring constant k. The mass
is displaced slightly from its equilibrium position. Show that it will undergo vertical

oscillations of period T = 2π
√
m/k. Explain why the gravitational acceleration g does

not enter into the expression for T .

(b) Describe the changes in the kinetic energy and the elastic and gravitational potential
energies of the system as the mass oscillates up and down.

(c) What will the period become if the length of the spring is halved ?

(d) What will the period become if the two half-springs are used in parallel ?

(e) An astronaut on the surface of the moon weighs rock samples using a light spring
balance. The balance, which was calibrated on earth, has a scale 100mm long which
reads from 0 to 1.0 kg. The astronaut observes that a certain rock gives a steady reading
of 0.40 kg and, when disturbed, vibrates with a period of 1.0 s. What is the acceleration
due to gravity on the moon?

3. A simple pendulum consisting of a mass m on a string of length l is released from rest
from an angle of θ0 to the vertical.

(a) Assuming that the pendulum undergoes simple harmonic motion, find an expression
for its angular displacement as a function of time; hence determine its speed as it passes
through the equilibrium position.

(b) Using conservation of energy find an exact expression for this speed.

(c) Show that your results for (a) and (b) are the same when θ0 is small.

(d) Find the percentage difference between the two results in (a) and (b) when θ0 =
0.20 rad.

(e) For the SHM case, find the tension T in the pendulum string during the motion.
Hint: the mass at the end of the pendulum is instantaneously doing circular motion with
angular velocity θ̇.
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4. A torsional pendulum disc is suspended in the horizontal plane by a vertical wire attached
at its centre as shown in the diagram. When the disk is twisted to an angle of 12◦ the wire
stores 0.52 J of energy. When the disc is released, it oscillates as a torsional pendulum
with a period of 0.5 s. Determine its moment of inertia.

r

F

F
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o

5. A mass M is supported by a smooth table and connected by two light horizontal springs
to two fixed blocks as shown in the diagram below. Each spring is of natural length L
and has a spring constant k.

M

4L

(a) Derive an expression for the angular frequency ω of horizontal longitudinal oscilla-
tions of the mass M .

(b) When the mass M is given a small transverse displacement, y (such that y ≪ L),
show that the transverse restoring force is approximately ky. Hence derive an expression
for the angular frequency ω of small transverse oscillations of the mass M .

(c) Describe qualitatively the motion that results if the mass M is displaced slightly in
an arbitrary direction and released from rest.
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6. Two masses, m1 and m2, are connected by a spring of force constant k and are acted
on by no other forces. They are oscillating about their centre of mass. Write down
expressions for the potential and kinetic energies of the system and hence show that the
frequency of oscillation of the system is

f =
1

2π

[
k
(

1

m1

+
1

m2

)]1/2
.

The 12C and 16O atoms in carbon monoxide are held together by a covalent bond;
their equilibrium separation is 0.130 nm. For a small change, u, in the separation of
the atoms from their equilibrium position the bond behaves like a spring in that the
potential energy change is proportional to u2. By plotting the appropriate graph, use
the data below to test the validity of this assertion and estimate the effective value of k
for the CO molecule. Hence find the frequency of vibration of the CO molecule.

u / nm 0.001 0.002 0.003 0.004 0.005
PE/ eV 0.006 0.023 0.057 0.093 0.150

[The PE may be assumed to be zero at the equilibrium separation. Assume a random
error of 0.002 eV in the PE measurements and that the error in u is negligible.]

7. The response of a system is given by

x = A cosω1t+ A cosω2t

where ω1 = 6π s−1 and ω2 = 4π s−1.

(a) Sketch and label the phasor diagrams representing this motion at time t = 0, t = 0.1 s,
t = 0.2 s, t = 0.3 s and t = 0.4 s.

(b) Rewrite the expression in terms of the product of two cos terms. Hence find a
general expression for the times at which the response is zero; relate this to your phasor
diagrams. Sketch the response as a function of time.

Oscillations in a a potential energy well

8. (a) A particle of mass m moves in a potential 1
2
kx2. Use conservation of energy to show

that the particle undergoes SHM. What is the frequency of the SHM?

(b) The previous potential is removed, and the particle now bounces back and forth
between (impenetrable) walls at x = 0 and x = l. The particle’s collisions with the walls
are elastic. If the particle has kinetic energy E, show the frequency of the oscillations
varies as ν ∝

√
E. Sketch the potential well the particle is oscillating in.

(c) The particle is now subject to a gravitational field g and dropped from rest a distance
h above the floor. When it hits the floor it bounces elastically, so energy is conserved.
What is the maximum kinetic energy of the particle, E? Show the frequency of the
oscillations varies as ν ∝ 1/

√
E.

(d) The same particle moves in a general potential V (x) with a minima at x = 0. Show
that if the particle is released close to this minimum, it will undergo SHM around the
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minimum with frequency ω2
0 = V ′′(0)/m. In this case, what is the relationship between

the maximum kinetic energy, E, and the frequency of the oscillation?

(e) What distinguishes the oscillations in (b) and (c) from SHM? Why does the general
principle in (d) not apply to the potentials in (b) and (c)?

Hint: A barrier such as a wall or a floor can be thought of as a a region of infinite
potential energy.

Complex representation of SHM

9. It is possible to describe a system performing SHM in four ways:

x = A cos(ωt+ ϕ)

x = B1 cosωt+B2 sinωt

x = Ceiωt + C∗e−iωt

x = Re{Deiωt}
where A, ϕ, B1 and B2 are real and C(= C1 + iC2) and D(= D1 + iD2) are complex.
Show that these four forms are equivalent and express A and ϕ in terms of (i) B1 and
B2, (ii) C1 and C2 and (iii) D1 and D2.

If ω = 3.0 rad s−1 and x = 0.020m and ẋ = 0.060m s−1 at t = 0, find the values of A, ϕ,
B1, B2, C and D.

Damped Harmonic Motion

10. (a) A pendulum consists of a spherical bob of radius r and density ρ attached to one end
of a thin, light rod of length l (≫ r) freely pivoted at its other end. Derive the equation
of motion for the angular displacement θ of the rod from the vertical, and show that the

angular frequency of small oscillations of the pendulum is given by ω0 =
√
g/l.

(b) The entire pendulum is now immersed in a light fluid which exerts a drag force on
the bob of magnitude αrv, where v is its speed and α is a constant. The system is
displaced from equilibrium and then released. Ignoring buoyancy effects, show that the
equation of motion for θ is now given by

θ̈ + 2γθ̇ + ω2
0θ = 0.

where γ = 3α/8πr2ρ.

Substitute a solution of the form θ = Aept into this equation. Show that the system will
oscillate after being released (i.e. it is lightly damped) if r > (3α/8πρω0)

1/2, and find
the general solution for θ under these circumstances.

If the density of the bob is 4000 kgm−3, l = 1.0m, r = 0.020m and α = 2.0N sm−2,
verify that the pendulum will oscillate after it is displaced from equilibrium and then
released. Find (i) the angular frequency of oscillation of the damped pendulum and (ii)
how long it takes for the energy to drop by a factor of e. Hence obtain a value for the
quality factor, Q, of the oscillation.
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11. (a) The pendulum from the previous question is displaced to a small angle θ0 and released
from rest. What ranges of γ give rise to heavy, critical and light damping? Find and
sketch θ(t) in each case.

(b) With each type of damping, θ(t) is built from terms that decay exponentially. For
each damping regime find an expression for τ , the characteristic decay time of the slowest
decaying term in θ(t). Sketch a graph of the τ against γ, and indicate the light, critical
and heavy damping regions. What is special about critical damping?

(c) The heavy damping solution has a second faster decaying term. Find its characteristic
decay time and add a line to the graph for this decay time as a function of γ.

Forced oscillations

12. A 2.0 kg object attached to a spring moves without friction (b = 0) and is driven by an
external force given by the expression F = 3.0 sin(2πt), where F is in newtons and t is in
seconds. The force constant of the spring is 20.0Nm−1. (a) Find the resonance angular
frequency of the system. Assuming the system is oscillating in its steady state find (b)
the angular frequency of the driven system, and (c) the amplitude of the motion.

Aside: since the system is undamped, the steady state assumption is actually dubious
since the transient solutions never vanish. You will learn more about this at IB.

13. *A more challenging problem*.

An oscillating force F cosωt (= Re{F eiωt}), where F is real, is applied to a mass m
on the end of a spring of force constant k. The displacement, x, of the particle can be
written as Re{z}. Explain why z obeys the equation

mz̈ = −kz + F eiωt.

Show that z = Aeiωt is a solution of the equation and find an expression for A; deduce
the expression for the displacement, x. Find the expressions for ż and z̈ and from these
deduce the velocity and acceleration of the mass.

Illustrate on Argand diagrams the complex amplitudes of the applied force and the
displacement, velocity and acceleration of the mass when (i) ω2 < k/m and (ii) ω2 >
k/m.

What happens when ω2 = k/m?

14. *A modified recent tripos question *
A seismograph allows the measurement of the amplitude of seismic waves of different
frequencies. It can be modelled as a mass m suspended inside a rigid box by a massless
spring of constant k, The motion of the mass is damped by a vertical viscous force which
may be assumed to be of magnitude b ẏ1, where y1 is the height of the mass in the inertial
frame of reference of the surface of the Earth (before any seismic wave is present) and b
is a damping coefficient. A light frictionless pen records the motion of the mass relative
to the box as shown in the figure below.
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Mass,	m
Recording	

device

4 DAMPED HARMONIC MOTION 4.3 Energy and amplitude decay

You can verify this by substituting it into eqn 99.
We again plot an example of this solution for a system with ω0 = 1 and started with pure

displacement (x(0) = 1, ẋ(0) = 0) in fig. 39. We see critically damped systems are the fastest
decaying systems: they strike a balance between being overdamped, where friction prevents the
mass from getting back to equilibrium, and underdamped where the mass oscillates for many cy-
cles before the amplitude decays. Many damped systems are engineered to be critically damped
so that they settle to their equilibrium point as quickly as possible: examples include car suspen-
sion, measuring instruments, weighing scales, closing doors and, latterly, the Millennium Bridge.

Figure 40: Baby be-
ing weighed on a
spring balance.

Example: Spring balance.
I am designing a spring balance to weigh babies, seen in fig. 40. When

I put a typical 4kg baby on the spring it extends by 0.25m. What damping
coefficient, b, do I need to critically damp my system? How long will it take
the reading on the scale to settle down in this case?

This is just a mass on a spring, with m = 4kg. When the baby hangs in
equilibrium there is a balance between gravity and the spring force mg =
kx = 0.25k, so k = 160Nm−1. The equation of motion is then just eqn
98, so we have γ = b

2m
and ω2

0 = k/m = 40s−2. For critical damping
we need γ = ω0 =

√
40, requiring b ≈ 50Nsm−1. The system will then

decay as e−γt = e−
√

40t, so the reading on the balance will settle down when√
40t ! 1, or in time t ! 0.16s. If we damp less than this the baby will

bounce for an extended period. If we damp more than this the spring will
extend slowly and we will be waiting a long time for the reading.

4.3 Energy and amplitude decay
4.3.1 Energy dissipation

For a mass on a spring, the total energy, as before, is

E = KE + PE =
1

2
mẋ2 +

1

2
kx2. (114)

However, unlike in SHM, with damping the total energy is not conserved. Its rate of change is:

dE

dt
= mẋẍ + kxẋ = ẋ(mẍ + kx). (115)

Recalling that the equation of motion for a damped mass on a spring is mẍ + bẋ + kx = 0, we
see that the rate of loss of energy is

dE

dt
= ẋ(−bẋ) = −bẋ2. (116)

This is exactly the work done by the frictional force: the friction force has magnitude −bẋ and
the power is force times velocity. Ė is always negative as friction only removes energy.

4.3.2 Amplitude and energy dissipation for light damping

For light damping our mass and spring still performs many oscillations with displacement

x = a0e
−γt cos(ωdt + φ). (117)

27

Pen	

Rigid	box

y2y1
Spring,	 k

A seismic wave moves the box vertically so that its height as a function of time is given
by y2 = as cos(ωt).
(a) Show the differential equation describing the motion of the mass is

ÿ1 +
b

m
ẏ1 +

k

m
y1 =

k

m
aS cos(ωt).

(b) Show the steady state motion is the mass is of the form y1 = Re
(
A(ω)eiΦ(ω)eiωt

)
,

and find expressions for A(ω) and Φ(ω).

(c) Sketch the amplitude of the response, A(ω), to seismic waves of fixed amplitude as
as a function of the angular frequency ω for the case where b is small. Use this sketch
to explain why seismographs are designed to work in the high-frequency domain.

Electrical circuits

15. A battery with emf E and internal resistance r is connected to a pair of resistors of
resistance R1 and R2.

(a) The two resistors are connected in series. Find expressions for (i) the current supplied
by the battery, (ii) the current through R1, (iii) the power produced by the battery and
(iv) the power dissipated in R1.

(b) Repeat the calculations in (a) when the two resistors are connected in parallel.
Assuming that the internal resistance of the battery r = 0, sketch a graph showing
how the currents through R1 and R2 and the current supplied by the battery vary as a
function of R1.
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16. Consider the circuit shown below. The capacitor is initially uncharged; at time t = 0
the switch is closed.

R

C

ε

(a) Describe, without using detailed mathematics, what happens to the charge on the
capacitor and the current flowing in the circuit with time after the switch is closed;
discuss the energy changes that occur in the capacitor and the battery. When the
capacitor is fully charged, how much energy is stored on the capacitor and how much
work has been done by the battery? Hence deduce the total energy dissipated in the
resistor during the process of charging.

(b) Explain why the equation for the charge, q, on the capacitor after t = 0 is given by

R
dq

dt
+

q

C
= E .

(c) Show, by direct substitution into the above equation or otherwise, that the solution
is given by

q = A+Be−t/τ

and hence find expressions for A and τ . By considering the appropriate boundary condi-
tion find an expression for B. Find the corresponding expression for the current flowing
in the circuit. Sketch graphs showing the variation of the charge on the capacitor and
the current in the circuit as functions of time.

(d) Use your expression for the current to verify that the total charge which has flowed
in the circuit when the capacitor is fully charged is CE .
(e) Use your expression for the current to find the instantaneous power dissipated in
the resistor and hence find the total energy dissipated in the resistor as the capacitor is
charged. Check that this agrees with your deduction in (a).
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Oscillations in electrical circuits

17. A 5-µF capacitor is connected across a 10-mH inductor as shown. At time t = 0 the
capacitor is uncharged and there is a current of 10 mA in the inductor.

5 �F

10 mH

(a) Describe in words the subsequent behaviour of the system.

(b) Write down the differential equation obeyed by the charge on the capacitor; deduce
the frequency of oscillation of the circuit and, taking account of the initial conditions,
find expressions for the charge on the capacitor and the current flowing in the circuit.

(c) What is the total energy stored in the system? Find expressions for the energy stored
in the inductor and in the capacitor and sketch a graph showing how the energy stored
in the inductor and capacitor varies as a function of time.

Complex impedance and resonance in electrical circuits

18. (a) Explain what is meant by the terms resistance, inductance, capacitance and impedance
in relation to AC circuits.

(b) An alternating voltage source, Vin = V eiωt, has amplitude V = 10V and angular
frequency ω = 300 rad s−1. Sketch and label an Argand diagram showing the voltage Vin

at time t = 0 and t = 0.007 s.

(c) The voltage source, Vin, is applied in turn across a 10Ω resistor (R), a 10mH inductor
(L) and a 100µF capacitor (C). Sketch and label, on three separate Argand diagrams,
the impedances of R, L and C, and the currents flowing through R, L and C at time
t = 0 and t = 0.007 s.

(d) The electronic components are now connected together in the following configura-
tions: (i) R and L in series, (ii) L and C in parallel; and the voltage Vin is applied.
On two separate Argand diagrams, sketch and label the resulting impedances, and the
current flowing through each of the circuits at time t = 0 and t = 0.007 s.
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19. An inductor, L, and capacitor, C, in parallel are connected in series with a resistance
R as shown in the figure below to form a band rejection circuit, which can be used
to selectively remove a range of input frequencies from the output. A voltage source,
Vi = V eiωt, is applied to the circuit.

L

C
RVi Vo

(a) Obtain a general expression for the output voltage, Vo.

(b) For V = 10V, ω = 300 rad s−1, R = 10Ω, L =10mH, C =100µF, show the
relationship between Vo and Vin on an Argand diagram.

(c) The input angular frequency, ω, is varied, while keeping V = 10V. Find the value of
ω for which the output voltage is zero and sketch the amplitude of Vo as a function of
the input frequency.

20. (a) By considering each half of the circuit on the left below as a potential divider, write
down expressions for the voltages VA at A and VB at B. Hence show that the condition
that the points A and B are at the same potential is given by Z1/Z2 = Z3/Z4.

Z1

Z2

Z3

Z4

A B

VBVA

Vi

R2 C4 R4

D

L

R3

R

(b) The ‘bridge’ circuit on the right above is said to be ‘balanced’ when the detector D
registers no voltage difference between its terminals. Use the result derived in (a) to find
formulae for R and L in terms of the other components when the circuit is balanced.

(c) A bridge has R2 = R3 = 300Ω, and unknown R and L. Balance is obtained by
adjusting R4 to 9 kΩ and C4 to 1.0µF. Find the values of R and L.
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21. (a) Find the complex impedance of the circuit shown below.

L
C

R

A

B

(b) If L = CR2 and a sinusoidal voltage of angular frequency 1/
√
LC is applied across

AB, show that the current flowing through the circuit is π/4 out of phase with the
applied voltage. Which leads ?

22. a) An AC load consists of two branches connected in parallel. The first is a resistor R
connected in series with a an inductor L and the second is a resistor R connected in
series with a capacitor C.

Obtain an expression for the total impedance of the load at an angular frequency ω and
hence derive the relationship between L, C and R which is necessary for the impedance
to be purely resistive at all frequencies.

b) Show that the impedance of a resistor R in parallel with a capacitor C is R/(1+iωRC).

The figure below shows the circuit diagram of an input voltage V1 being applied to the
input terminals of an oscilloscope through a cable and a compensating probe. The input
impedance of the oscilloscope itself is equivalent to a resistance of 1 MΩ in parallel
with a capacitance of 30 pF, between its input terminal and ground. The cable to the
probe contributes an additional capacitance of 45 pF between the oscilloscope input and
ground, and the probe itself consists of a 9 MΩ resistance in parallel with a capacitor
C1.

Determine the value of the capacitor C1 which makes the ratio of V2/V1 independent
of frequency. With this value of C1, determine the input impedance seen at the input
to the probe (at V1), expressing your answer in the form of a resistor in parallel with a
capacitor.

9 MW

30 pF

C1

Probe Cable Oscilloscope

V
1

V21 MW
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23. The series resonant circuit shown below is driven by a voltage Vi oscillating at angular
frequency ω.

L

C

R

Vi Vo

Obtain a general expression for the voltage Vo. Find the amplitude of Vo and its phase
relative to Vi for ω = 0, ω = ω0 = 1/

√
LC and ω = ∞; hence sketch how the amplitude

and phase of Vo/Vi vary as a function of frequency. (You may assume that the resistance
R is very low, such that R ≪ 1/(ω0C) – under these circumstances the maximum value
of |Vo/Vi| occurs when ω ≈ ω0.)

The circuit is to be used as a filter to pass frequencies within ±20 kHz of 10MHz. If the
inductance L is chosen to be 100µH what values of C and R should be chosen?

24. For the circuit below find:

(a) the rms current drawn from the 240V rms supply if the frequency is 50Hz, and the
phase of the current relative to the applied voltage;

(b) the frequency which maximises the current drawn from the 240V rms supply, and
the value of this current.

(c) Find the voltage across the capacitor at that frequency.

(d) Explain why the voltage across the capacitor is greater than the total voltage applied
to the circuit.

1 �
240 V
rms 1 �

1 �
470 �F

10mH
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Answers to problems

1. 0.628m s−1.

2. (c) T/
√
2; (d) T/2; (e) 1.6m s−2.

3. (d) 0.2 %.

4. 0.150 kgm2.

5. (a) ω2 = 2k/M ; (b) ω2 = k/M .

6. 1.9× 103Nm−1, 6.5× 1013Hz.

7. (b) t = (2n+ 1)/10 s, where n is an integer.

9. A = 0.028m, ϕ = −π/4, B1 = 0.020, B2 = 0.020, C = (0.010 − 0.010i)m, D =
(0.020− 0.020i)m.

10. (b) θ = ae−γt cos(ω1t+ ϕ) where ω2
1 = ω2

0 − γ2; (i) 3.13 s−1, (ii) 3.35 s; 10.5.

12. (a) 3.16 s−1, (b) 6.28 s−1, (c) 5.09 cm

13. A =
F

(k −mω2)
.

14. A(ω) =
k aS√

(k −mω2)2 + (bω)2
and Φ(ω) = − tan−1

(
b ω

k −mω2

)
.

16. (c) q = CE
(
1− e−t/RC

)
.

17. (b) ω = 4.5× 103 s−1, 2.2× 10−6 sinωt C, 0.01 cosωt A;
(c) 5× 10−7 J.

18. (b) phase = 120.3◦ at t = 0.007 s;
(c) ZL = 3Ω at 90◦, IL = 3.3A at −90◦, ZC = 33.3Ω at −90◦, IC = 0.3A at +90◦;
(d) ZRL = 10.4Ω at +16.7◦, IRL = 0.96A at −16.7◦,
ZLC = 3.3Ω at +90◦, ILC = 3.0A at −90◦.

19. (b) Vo = 9.5V at −18.2◦;
(c) Vo = 0 for ω = 1000 rad s−1, Vo = 7.3V at −43.2◦ for ω = 600 rad s−1, Vo = 7.0V at
+45.7◦ for ω = 1600 rad s−1.

20. (c) 10Ω, 90mH.

22. (a) R2 = L
C
, (b) 8.3 pF, 10M ∥ 7.5pF.

23. 2.5 pF, 25 Ω.

24. (a) 127A ̸ 6.4◦, (b) 73.4 Hz, 160A, (c) 369V ̸ − 90◦

13



Related IA Physics Tripos questions

Simple harmonic motion:
2013 C10
2014 C11
2015 A1
2015 C10
2016 C11
2017 C10
2017 C11
2018 C10 (last part)
2019 B7
2020 B7
2021 A3
2021 B8
2022 A3
2023 B8

Electrical circuits, Complex impedance and Oscillations:
2013 C11
2014 C10
2015 C11
2016 A3
2016 C10
2017 A6
2018 C11
2019 A2
2020 A1
2022 B8
2023 A2
2023 A5
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