
QUANTUM INFORMATION AND COMPUTATION
EXERCISE SHEET 3

(Lent 2022-2023)

(1) (Bernstein-Vazirani problem)
For n-bit strings x = x1 . . . xn and a = a1 . . . an in Bn we have the sum x⊕ a which is an n-bit
string, and now introduce the 1-bit “dot product” x · a = x1a1 ⊕ x2a2 ⊕ . . .⊕ xnan.
For any fixed n-bit string a = a1 . . . an consider the function fa : Bn → B1 given by

fa(x1, . . . , xn) = x · a (1)

(a) Show that for any a ̸= 00 . . . 0, fa is a balanced function i.e. fa has value 0 (respectively 1)
on exactly half of its inputs x.
(b) Given a classical black box that computes fa describe a classical deterministic algorithm
that will identify the string a = a1 . . . an on which fa is based. Show that any such black box
classical algorithm must have query complexity at least n.

Now for any n let Hn = H⊗ . . .⊗H be the application of H to each qubit of a row of n qubits.
Show that (for x ∈ B1 and a ∈ Bn)

H |x⟩ = 1√
2

1∑
y=0

(−1)xy |y⟩ Hn |a⟩ =
1√
2n

∑
y∈Bn

(−1)a·y |y⟩

(c) (the Bernstein–Vazirani problem/algorithm)
For each a consider the function fa which is a balanced function if a ̸= 00 . . . 0 (as shown
above). Show that the Deutsch-Jozsa algorithm will perfectly distinguish and identify the
2n − 1 balanced functions fa (for a ̸= 00 . . . 0) with only one query to the function (quantum
oracle for f). Indeed, show that the n bit output of the final measurements of the algorithm
gives the string a with certainty for these special balanced functions.

(2) (Classical complexity – integer exponentiation mod N)
Exponentiation of integers mod N is a basic arithmetic task (it’ll be used for example in Shor’s
algorithm) and it is important to know that it can be done in poly(n) time where n = logN is
the number of digits for integers in ZN .
To compute say 3k modN (for k ∈ ZN and N > 3) we could multiply 3 together k times. Show
that this is not a poly(n) time computation.
Devise an algorithm that does run in poly(n) time. (Hint: consider repeated squaring).
You may assume that multiplication of integers in ZN may be done in O(n2) time.
Generalise to a poly time computation of kk21 mod N for k1, k2 ∈ ZN showing that it may be
computed in O(n3) time.

(3) (Simon’s algorithm)
Simon’s decision problem is the following:
Input: an oracle for a function f : Bn → Bn,
Promise: f is either (a) a one-to-one function or (b) a two-to-one function of the following
special form – there is an ξ ∈ Bn such that f(x) = f(y) iff y = x⊕ ξ (i.e. ξ is the period of f
when its domain is viewed as being the group (Z2)

n).
Problem: determine which of (a) or (b) applies (with any prescribed success probability 1 − ϵ
for any ϵ > 0).

It can be argued (e.g. as indicated in lecture notes) that for classical computation, this requires
at least O(2n/4) queries to the oracle. In this question we will develop a quantum algorithm that
that solves the problem with quantum query complexity only O(n). Even more, the algorithm
will determine the period ξ if (b) holds. Thus (unlike the balanced vs. constant problem) we’ll
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have a provable exponential separation between classical and quantum query complexities, even
in the presence of bounded error.

To begin, consider 2n qubits with the first (resp. last) n comprising the input (resp. output)
register for a quantum oracle Uf computing f i.e. Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩ for n-bit strings x
and y.
(a) With all qubits starting in state |0⟩ apply H to each qubit of the input register, query
Uf and then measure the output register (all measurements being in the computational basis).
Write down the generic form of the n-qubit state |α⟩ of the input register, obtained after the
measurement. Suppose we then measure |α⟩. Would the result provide any information about
the period ξ?

(b) Having obtained |α⟩ as in (a), apply H to each qubit to obtain a state denoted |β⟩. Show
that if we measure |β⟩ then the n-bit outcome is a uniformly random n-bit string y satisfying
ξ · y = 0 (so any such y is obtained with probability 1/2n−1).

Now we can run this algorithm repeatedly, each time independently obtaining another string y
satisfying ξ ·y = 0. Recall that Bn = (Z2)

n is a vector space over the field Z2. If y1, . . . , ys are s
linearly independent vectors (bit strings) then their linear span contains 2s of the 2n vectors in
Bn. Furthermore to solve systems of linear equations over Bn we can use the standard Gaussian
elimination method (calculating with the algebra of the field Z2), which runs in poly(n) time.

(c) Show that if (n−1) bit strings y are chosen uniformly randomly and independently satisfying
y · ξ = 0 then they will be linearly independent (and not include the all-zero string 00 . . . 0)
with probability

n−1∏
k=1

(
1− 2k−1

2n−1

)
=

1

2

n−2∏
k=1

(
1− 2k−1

2n−1

)
.

Show that this is at least 1/4. (It may be helpful here to recall that for a and b in [0, 1] we have
(1− a)(1− b) ≥ 1− (a+ b)).

(d) Show how the above may be used to solve Simon’s problem with O(n) quantum query
complexity (for any desired success probability 0 < 1− ϵ < 1).

(4) (Another query complexity problem with quantum advantage)
Let Bn denote the set of all n-bit strings. The Hamming distance between two n-bit strings
a = a1 . . . an and x = x1 . . . xn is the number of places j where aj and xj differ. Let Ha : Bn →
B2 be the function

Ha(x) = (Hamming distance between a and x) mod 4.

Here we are identifying B2 with Z4 via the usual binary representations of 0,1,2,3. (For example
if a = 101110000 and x = 001001110 then Ha(x) = 6 mod 4 = 2.)

Now consider the promise problem HAM-mod4:
Input: a black box for a function f : Bn → B2.
Promise: f is Ha for some n-bit string a.
Problem: determine a with certainty.

In the quantum context the black box is a unitary operation on (n+ 2) qubits given by

Uf |x⟩ |y⟩ = |x⟩ |y + f(x)⟩ .

Here the x register is n qubits and in the y register we’ll write the basis as {|0⟩ , |1⟩ , |2⟩ , |3⟩}
with addition in the expression y + f(x) being addition in Z4.

(a) Show that classically the query complexity of HAM-mod4 is at least n/2.
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We will now show that the problem can be solved quantumly with just one query. Let M be
the matrix

M =
1√
2

(
1 i
i 1

)
.

Note that M is unitary. Also introduce the 1-bit functions h0, h1 : B1 → B1 where

h0(0) = 0 h0(1) = 1 and h1(0) = 1 h1(1) = 0

i.e. ha is just Ha for 1-bit string a.

(b) For a1 = 0, 1 show that

M |a1⟩ =
1√
2

1∑
x1=0

iha1 (x1) |x1⟩ .

(c) Returning to the case of n-bit strings a = a1 . . . an and x = x1 . . . xn show that

Ha(x) = ha1(x1) + . . .+ han(xn) mod 4.

Hence describe how the state

|Ha⟩ =
1√
2n

∑
x∈Bn

iHa(x) |x⟩

may be manufactured from |a⟩.

(d) Let S denote the 2-qubit “shift” operation

S |y⟩ = |y + 1 mod 4⟩ y ∈ Z4.

Let QFT denote the quantum Fourier transform mod 4. Calculate the state |ψ3⟩ = QFT |3⟩
and show that S |ψ3⟩ = i |ψ3⟩.

(e) Use the above results to show how HAM-mod4 may be solved with certainty using just
one query to the oracle Uf and poly(n) total time complexity. (It may be helpful to note that
UHa |x⟩ |y⟩ = |x⟩SHa(x) |y⟩.)
Draw a circuit diagram for your quantum algorithm.

[Optional afterthought: note that this algorithm is structurally “the same as” the Bernstein-
Vazirani (BV) algorithm and it is interesting to compare the corresponding ingredients and
their functionality. What are the BV ingredients corresponding to the use of QFT , |ψ3⟩, M ,
ha and Ha here? ]

(5) (Approximately universal quantum gate sets)
(a) For unitary gates U1, V1, U2, V2 show that:
if ||U1 − V1|| ≤ ϵ1 and ||U2 − V2|| ≤ ϵ2 (i.e. the V ’s are “approximate versions” of the U ’s)
then ||U2U1 − V2V1|| ≤ ϵ1 + ϵ2 i.e. “errors” in using approximate versions at most add when
gates are composed.
(Recall that here ||U − V || is defined as the maximum length of the vector (U − V ) |ψ⟩ over all
choices of normalised |ψ⟩’s.)

Deduce that if ||Ui − Vi|| ≤ ϵ for i = 1, . . . , n then ||Un . . . U1 − Vn . . . V1|| ≤ nϵ.

(b) For the purposes of this question you may assume the following: if a gate set S is approx-
imately universal then any one- or two-qubit gate U may be approximated to within ϵ by a
circuit of gates from S of size poly(1/ϵ). (Actually by the Solovay-Kitaev theorem, mentioned in
lectures, a stronger result is true viz. that a circuit of much smaller size poly(log(1/ϵ)) suffices,
but we will not need that improvement here.)
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Let G and H be two approximately universal sets of gates comprising one- and two-qubit gates
only. Suppose that the decision problem D is in the complexity class BQP with all quantum
gates in the circuits being from the set G. Show that D is then also in the class BQP defined
using quantum gates from the set H i.e. the definition of BQP is independent of the choice of
approximately universal set of gates used.

(6) (Period finding algorithm)
Consider the function f(x) = 5x mod39 on the domain x ∈ Z2m with say m = 11 (as in fact
would occur in Shor’s algorithm for factoring 39).

(a) Show that f is periodic and determine its period r (hmm.. reach for a calculator.)

(b) Suppose we construct the equal superposition state |f⟩ of (x, f(x)) values over the domain
Z2m , measure the second register, perform the quantum Fourier transform mod 2m on the post-
measurement state of the first register, and finally measure it. What is the probability for each
possible outcome 0 ≤ c < 2m in the latter measurement? (Note: this should require very little
calculation!) What is the probability that we successfully determine r from this measurement
result, using the standard process of the quantum period finding algorithm?

(7) (Entanglement is necessary for advantage in quantum computation)
Consider a quantum computation, given as a poly-sized circuit family {C1, C2, . . . , Cn, . . .}
where each Cn comprises gates from a universal set G comprising one- and two-qubit gates, and
suppose that this computation solves a decision problem A in BQP.
Suppose further that for any input x ∈ Bn to the circuit Cn (for any n), at every stage of the
process, the quantum state is unentangled i.e. it is a product state of all the qubits involved.
Show that then the problem A is also in BPP i.e. if no entanglement is ever present in a quan-
tum computation, then it cannot provide any computational benefit over classical computation
(up to at most a polynomial overhead in time). (Hint: consider calculating the progress of the
quantum process itself on a classical computer).
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