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ROTATIONAL MECHANICS and SPECIAL RELATIVITY 
 

Dr S Williams 
 

Mechanics in R otational Motion: Centre of mass: calculation for a solid body by 
integration. Turning moments: lever balance; conditions for static equilibrium. Circular motion: 
angle, angular speed, angular acceleration; as vectors. Moments as vectors: vector turning 
moment; vector moment of a couple. Moment of inertia: calculation of moment of inertia; 
theorems of parallel and perpendicular axes. Angular momentum: concept and definition; 
conservation; angular impulse; rotational kinetic energy. Rotational oscillations: the physical 
pendulum. General motion of a rigid body: example of solid cylinder rolling down a plane. 
Rotating frames: centripetal force. Equivalents: linear and rotational quantities. Gyroscope: how 
it works; precession. 

 
Special Relativity: Frames of reference: general ideas. Historical development: problems with 
classical ideas; the Aether; Michelson-Morley experiment. Inertial frames: Galilean 
transformation. Einstein’s postulates: statement; events, and intervals between them; 
consequences for time intervals and lengths; Lorentz transformation of intervals; simultaneity; 
proper time; twin paradox; causality; world lines and space–time diagrams. Velocities: addition; 
aberration of light; Doppler Effect. Relativistic mechanics: momentum and energy; definitions; 
what is conserved; energy– momentum invariant. Nuclear binding energies, fission and fusion. 

 
ISAAC PHYSICS – join the lecture group: 
Isaac Physics will be used as an integral part of this lecture course and therefore all students 
should take the following 5 steps: 

1. Login / sign-up for a FREE account on Isaac (make sure you will remember your password 
or use Google or Facebook – Isaac will NOT post to either of these) 

2. Click on this link https://isaacphysics.org/account?authToken=V7BPWF  

3. Click OK on the pop-up that asks you to agree to share your data with me (“your data” 
means that I am able to see your progress with the questions that I have set.) 

4. Go to https://isaacphysics.org/account and click on the tab “Beta Features”.  Tick the 
check box next to “Equation Text Entry”. 

5. Go to your assignments where you will see the first 2 questions for preparation for the 
first lecture.  Assignments will be added after each lecture with typically 2 questions in 
each.   

 
BOOKS & RESOURCES 

isaacphysics.org:  Questions in mechanics section – topics include statics, dynamics, circular 
motion, angular motion, SHM. 

Understanding Physics, Mansfield & O’Sullivan (Praxis 2008) 

Physics for Scientists and Engineers (with Modern Physics), Tipler P A & Mosca G (6th Edition 
Freeman 2008) 
 

https://isaacphysics.org/account?authToken=V7BPWF
https://isaacphysics.org/account
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Planning your time: 
The University’s recommendation for the number of hours that students should spend studying per 
week is 45 hours.  In IA NST there are ~ 25 hours contact time which leaves 20 hours personal study 
time to be shared across the 3 experimental subjects and mathematics (i.e. ~5 hours per subject).   

Developing confidence in problem-solving in physics takes practice, and access to problems of 
varying difficulty.  I have therefore designed this course to keep within the recommended workload 
BUT maximise your exposure to problems which are our key to understanding physical concepts. 

You should aim to: 
a) spend a maximum of 40 mins preparing for each physics lecture (total of 2 hours per week).   

This will involve reading through the lecture notes and attempting the Isaac Physics examples 
that have been set for lecture preparation and for lecture revision. 
It is important that all students do this and answer the questions online through Isaac.  Isaac 
provides you with hints and feedback, and me with a summary that will enable me to see if 
there are any particular questions that have caused issues so that I can go through them in 
my weekly online surgery (tutorial) - see below. 

b) spend a maximum of 3 hours answering questions for supervisions –some questions for each 
supervision will have hints and support on Isaac Physics to save you a little time and provide 
you extra support – answers will not be given in the handout but Isaac will mark them instantly 
and give you feedback if you have made a common mistake.   
If you are able to complete the standard 6 questions in less than 3 hours additional problems 
are provided for you to fill your time. 

Additional help and support – online office hours:  
To help you to make the most of your personal study time in physics I will be providing online office 
hours (Details on Moodle) where I will go through: 

• how to solve the preparation and review questions that have caused the class the most 
consternation (as determined by the class progress on Isaac). 

• selected Tripos questions that summarise the topics / concepts covered in lectures each week 
• any other questions that people have – I will help with supervision questions but only AFTER 

you have been through them with your supervisors first. 
• It will be up to you to ask questions too – I will not just go through all the questions from the 

week. 

About the examples / problems for this course. 
So for problem solving practice I will provide: 

i. Questions for preparation for each lecture and to practice the lecture content.  These 
questions are designed to take a maximum of 20 mins each and are revision either of material 
that you have done at school or that has just been taught in the lecture.  If after 20 mins you 
haven’t solved the problem, stop and visit the online office hours. 

ii. 24 examples which are contained in this booklet.  The 
answers are given here for all the questions except 
those that are on Isaac.  This is because Isaac will give 
you direct feedback as to whether your answer is right 
AND give you hints and videos to help you on your way 
if you are finding it difficult to get in to the problem.  If 
you make a common mistake Isaac will also give you 
specific feedback too. 

You can, of course, do as 
many questions as you like 
but it is sufficient to do the 24 
standard examples written 
out in this book, by the 
beginning of Lent Term. 
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iii. Additional examples at the end of each section (i.e. RM and SR - pages have a grey edge), 
plus Tripos questions for revision.   

 

The 24 standard problems have been carefully chosen to illustrate most of the material of the course 
and to aid your understanding.  To keep up you will need to attempt about six per week and I 
indicate when questions can be done in the lecture handout, but be guided by your supervisor.  
Keep all your written work and plan your solutions, don’t just write down random equations or 
numbers.  This will help you with revision in the Easter Term.  

Alternatively, if you want to further challenge your understanding, you and your supervisor may 
discuss substituting some of the standard questions with additional questions or may use the 
additional questions to discuss during your supervisions. 

I also suggest further examples taken from past Tripos papers as good revision questions and for 
those that want to try out the exam style. 

You may find some of these examples are more difficult than those you have met before. Don’t be 
alarmed if it takes you some time to learn the techniques required to answer them.  Talking to others, 
your colleagues and in particular your supervisor, is a valuable way to explore different approaches to 
answering problems.  Remember that you are not in competition with your colleagues, it is often very 
helpful, and quite satisfactory, to work with another student such as your supervision partner.  

There follows a set of guidelines which you should adopt when you tackle any physics problem - 
NEVER be tempted to skip step 1 (diagram).  Please use them – they really will help!  Particular advice 
for answering relativity problems is provided in the Special Relativity section. 

Additional online examples from Isaac Physics. 
Isaac Physics can provide you with as many (or as few) questions as you wish to practise, at a level 
that is most helpful to each of you individually (either extension materials or confidence building 
questions).   

Of the 6 topics available within the mechanics section, those most closely aligned to this course are 
those of statics, dynamics, kinematics and circular and angular motion.  Some questions in the SHM 
section you may also find useful.  You can select your own questions by topic and level here 
https://isaacphysics.org/gameboards/new . 
  

https://isaacphysics.org/gameboards/new
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How to solve Physics problems 

Here is some general advice which you should apply to every Physics problem you tackle. 
Now is the time to develop the techniques which make the problems easier to understand 
and which can provide you with a framework within which to think about Physics. 

1. Draw a diagram 
 A diagram always helps to clarify your thoughts. Use it to define the symbols 

you need to use (see 3 below). Make it big enough and be tidy. 

2. Think about the Physics 
 Ask yourself what is going on, and write it down in words in just one or perhaps 

two sentences. Try to understand the problem qualitatively before writing down 
any equations. Do not just write down equations! 

3. Stay in symbols until the end 
 At school you may have been taught to make calculations numerically rather 

than algebraically. However, you usually give yourself a big advantage if you 
delay substitution of numerical values until the last line as it enables you to check 
dimensions at every stage, and quantities often cancel before the last line. An 
exception to this rule arises where some terms are dimensionless factors which 
are simple fractions. 

4. Check the dimensions 
 Think about the dimensions of every quantity even as you write it down. You will 

find this a discipline which helps enormously to avoid errors and helps 
understanding. Make sure that the dimensions of your final equation match on 
each side before you make a numerical substitution. Write down the units of your 

answer at the end e.g. 4.97 J kg–1. 

5. Does the answer make sense? 
 You will probably have an idea of what looks about right, and what is clearly 

wrong. Many mistakes are simple arithmetic errors involving powers of ten. If in 
doubt, check your substitutions. 
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Lecture preparation problem list (also shown in the lecture handout). 

The level of difficulty for each question is given in brackets (L1 is the lowest level, L6 is the hardest). 

Lecture 1 preparation (to be done before lecture 1): 
• Symmetry and Centre of Mass (L1) 
• Shelf and Brackets (L3) 

Lecture 1 review (to be done before lecture 2):  
• Weight of a Lorry (L4) 
• Space Monster Attack (L5) 

Lecture 2 review (to be done before lecture 3):  
• A Fairground Ride (L4) 
• Moments of Inertia (L5) 

Lecture 3 review (to be done before lecture 4):  
• An Audio CD (L4) 
• Old Fashioned Record (L5) 

Lecture 4 review (to be done before lecture 5):  
• Sphere Versus Cylinder (L4) 
• T Shaped Pendulum (L6) 

Lecture 5 review (to be done before lecture 6):  
• Ping-Pong on a Bus (L4) 
• Space Justice (L6) 

Lecture 6 review (to be done before lecture 7):  
• The Michelson-Morley Experiment (L5) 
• Light Clock (L6) 

Lecture 7 review (to be done before lecture 8):  
• A Lifeboat (L4) 
• Angle between Two Identical Masses (L6) 

Lecture 10 review (to be done before lecture 11):  
• Maximum Deflection of a Particle (L6) 

 
 

  

https://isaacphysics.org/questions/symmetry_and_com?board=rm_sr_l1
https://isaacphysics.org/questions/shelf_brackets_res1617?board=rm_sr_l1
https://isaacphysics.org/questions/weighing_lorry?board=rm_sr_l1r
https://isaacphysics.org/questions/space_monster_2?board=rm_sr_l1r
https://isaacphysics.org/questions/fairground_ride?board=rm_sr_l2r
https://isaacphysics.org/questions/moi_objects_num?board=rm_sr_l2r
https://isaacphysics.org/questions/music_CD?board=rm_sr_l3r
https://isaacphysics.org/questions/record_ang_vel_num?board=rm_sr_l3r
https://isaacphysics.org/questions/sphere_vs_cylinder?board=rm_sr_l4r
https://isaacphysics.org/questions/t_pendulum_num?board=rm_sr_l4r
https://isaacphysics.org/questions/ping_pong_bus_num?board=rm_sr_l5r
https://isaacphysics.org/questions/space_justice_num?board=rm_sr_l5r
https://isaacphysics.org/questions/michaelson_morley?board=rm_sr_l6r
https://isaacphysics.org/questions/light_clock_num?board=rm_sr_l6r
https://isaacphysics.org/questions/lifeboat?board=rm_sr_l7r
https://isaacphysics.org/questions/angle_between_identical_masses?board=rm_sr_l7r
https://isaacphysics.org/questions/maximum_deflection_angle_num?board=rm_sr_l10r
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Standard problems. 
Answers are given to all problems that are not on Isaac Physics.  To answer the questions on Isaac, 
login and go to “my assignments” from the menu bar or use the link given in the question.  You can 
check your answer on Isaac Physics but also find hints and videos to help with the problems. 
A question about calculating the position of the centre of mass etc. by integration. 

1. (a) A uniform solid cone has a height 𝑏 and a base radius 𝑎. It stands on a 
 horizontal table. 

(i) Draw a diagram showing the cone divided into thin horizontal discs, each of 
thickness δh. Find an expression for the volume of the disc at height ℎ	above 
the base. Integrate over all the discs to find the total volume 𝑉 in terms of 𝑎 
and b. 

(ii) The height, 𝑏! , of the centre of mass is defined by the relation 

𝑏! =*
𝑚"ℎ"
𝑀

"

 

where 𝑀 is the total mass,𝑚" is the mass of the disc at height ℎ" and the sum 
is taken over all the discs.  Treat the sum as an integral, and hence find 𝑏!in 
terms of 𝑏. 

(b) A uniform solid cylinder of radius 𝑟 and length 𝑙 is cut into two equal parts along 
its cylindrical axis. Find the position of the centre of mass of either part. 

{ (a)  i. 𝑉 = #
$
a%b ;  ii.𝑏! = 𝑏/4  (b) 4𝑟/3𝜋  } 

A question about extended bodies in static equilibrium. 

2. Two rough cylinders, each of mass 𝑚 and radius 𝑟, are placed parallel to each other 
on a rough surface with their curved sides touching.  A third equivalent cylinder is 
balanced on top of these two, with its axis running in the same direction. 

For this setup to be stable, what is the minimum coefficient of friction between the 
horizontal surface and the cylinders?  

{https://isaacphysics.org/questions/nst1A_RM_q2} 

A question using Newton’s Second Law for rotational mechanics to calculate the angular 
acceleration of the body.  For extension and practice, derive the moment of inertia of the 
sphere. 

3. A uniform, solid sphere of density 𝜌 and radius 𝑎, is rolling down a perfectly frictional 
plane inclined at angle 𝛼 to the horizontal.  The moment of inertia of the sphere, 𝐼 =
&
'(
𝜋𝜌a(. 

(a) Use the rotational form of Newton’s Second Law to find an expression for the 
angular acceleration of the sphere as it rolls down the plane in terms of 𝜌, 𝑎 and 
the frictional force 𝐹 that acts on the sphere.  

(b) By integrating over a series of thin discs, discs from −𝑎 to 𝑎, show that the 
moment of inertia of the solid sphere is indeed &

'(
𝜋𝜌a(  . 

{ (a) 15𝐹/8𝜌𝜋𝑎)  } 

https://isaacphysics.org/questions/nst1A_RM_q2
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Break this question down into parts: first draw a diagram, and then find the frictional force 
on an element of the disc … etc. 

4. A uniform disc of mass 𝑚 and radius 𝑎, rotating at an angular speed of 𝜔, is 
placed flat on a horizontal flat surface.  If the coefficient of friction is 𝜇, find the 
frictional torque on the disc, and hence calculate the time it takes to come to rest. 

{https://isaacphysics.org/questions/nst1A_RM_q4} 

Practice using the parallel and perpendicular axis theorems to find moments of inertia. 

5. State the parallel and perpendicular axes theorems. 

(a) Calculate the moment of inertia of a uniform square plate of side 𝑎 and mass 
𝑚 about an axis through its centre and parallel to a side. 

(b) Use the perpendicular axis theorem to find the moment of inertia through the 
centre and perpendicular to its plane. 

(c) More generally, show that the moment of inertia of a square plate about any 
axis in its plane through its centre is the same. 

(d) Use the theorems of parallel and perpendicular axes to find the moment of inertia 
of a hollow thin cubical box of side 𝑎 and total mass 𝑀 about an axis passing 
through the centres of two opposite faces. 

{ (a)𝑚𝑎%/12 ; (b)𝑚𝑎%/6 ; (d) 5𝑀𝑎%/18  } 

Here is an example of an “angular collision”. Note that angular momentum is conserved only 
if the system is isolated. 

6. Two gear wheels are cut from the same uniform sheet of metal, the mass per unit 
area of which is 𝜎.  One gear wheel has radius 𝑎  and the other radius 2𝑎 with 
twice as many teeth.  They are mounted on parallel light axles through their 
centres and perpendicular to their faces just far enough apart not to mesh. 

(a) Calculate their moments of inertia in terms of 𝜎 and 𝑎. 

(b) The larger wheel is now spun with angular speed 𝜔. What is the t o t a l  
angular momentum of the system in terms of	𝜎, 𝑎 and 𝜔 ? 

(c) The gear wheels are now suddenly meshed, but their axles remain in the same 
plane. During this process energy is lost, and the wheels exert equal and 
opposite tangential impulses ∫𝐹(𝑡)𝑑𝑡  on each other.  Consider the effect of the 
angular impulses ∫ 𝑟𝐹(𝑡)𝑑𝑡  associated with these forces on the angular 
momentum of each wheel, where r is the radius of the wheel concerned.  Hence 
show that the angular speed of the larger wheel falls by 20%. 

(d) Show that the total angular momentum falls by 30% . Why is it not 
conserved in your calculation? 

 { (a) 𝜎𝜋a)/2, 8𝜎𝜋a) (b)	8𝜎𝜋a)𝜔  } 

 

 

https://isaacphysics.org/questions/nst1A_RM_q4
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7. The hollow cubical box of question 5 (d) is suspended from a horizontal 
frictionless hinge along one of its edges. The box is displaced slightly from 
equilibrium. Show that when displaced through some small angle 𝜃 it obeys the 
following equation of motion  

�̈� = −
9𝑔𝜃
7√2𝑎

 

 (As you’ll see later in the oscillations course, this corresponds to simple harmonic motion 

with a period 𝑇 = 2𝜋N*√%,
-.

 ) 

These are examples of “solid body dynamics” in which there is both rotational and 
linear motion 

8. A thin, uniform bar of length 𝑙  and mass 𝑀  is suspended horizontally at rest. It is 
suddenly released, and at the same instant, is struck by a sharp blow vertically 
upwards at one end — the duration of the impulse can be taken to be negligibly 
short. 

(a) “The centre of mass moves as if acted upon by the (vector) sum of the external 
forces”. Describe the motion of the bar's centre of mass. 

(b) “The rotation about the centre of mass is caused by the sum of the moments of 
the external forces”.  Describe the rotational motion of the bar. 

(c) Hence, by combining your answers to (a) and (b), describe how the bar moves 
after being struck. Be as quantitative as possible, considering in particular  

(i) the time taken by the centre of mass to reach maximum height, and  

(ii) the rate of rotation. 

(d) In a particular experiment, the bar passes through its original position in the 
same orientation after a time, 𝑡. Demonstrate that, 𝑡% = 2𝜋𝑛𝑙/3𝑔 , where 𝑛  is an 
integer and g is the magnitude of the acceleration due to gravity.  

{ (c) i. 𝑙𝜔/6𝑔 ; ii. 𝜔 = 6𝑣!/𝑙  } 
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9. A solid cylinder of mass 𝑀 and radius 𝑎 is free to roll (without slipping) on a 
horizontal surface and is connected to a light spring of constant k as shown in the 
diagram. The system is displaced from equilibrium by rolling the cylinder so that 
the spring extends a small amount along its axis. Show that the displacement 𝑥 
obeys the following equation of motion 

�̈� = −
2𝑘𝑥
3𝑀  

 (Similar to question 7, this is simple harmonic motion but this time with 𝑇 = 2𝜋N$/
%0

) 

 

These are examples of gyroscopic motion with constant precession. 

10. A gyroscope wheel is at one end of an axle of length 𝑑.  The other end of the axle is 
suspended from a string of length 𝑠, that makes a fixed angle 𝜃  with the vertical.  The 
wheel is set into motion so that it executes uniform precession in the horizontal plane.  
The wheel has mass 𝑀 and moment of inertia about its centre of mass	𝐼.  Its angular 
speed about the axle through its centre is 𝜔.  Neglect the mass of the axle and the 
mass of the string and assume that |𝜔| ≫ |Ω| .  What is the direction and magnitude 
of the angular velocity of precession? 

{https://isaacphysics.org/questions/nst1A_RM_q10} 

 

 

 

 

 

 

a	

https://isaacphysics.org/questions/nst1A_RM_q10
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Additional Problems [not compulsory] 

A1. A truss is made by hinging together two uniform 
rafters each of weight	𝑊 and length 𝐿.  They rest 
on an essentially frictionless floor, so that their 
ends are a distance 𝑑 apart and are held together 
by a tie rope attached at points a distance 𝑥 from 
the ends.  A load of weight 𝑤 is held at their apex. 
Find the tension in the tie rope. 

{ !
"#(%&!'!!)

()*+)

,-'"#.
 } 

 

A2. A cyclist, riding up a steep hill, finds that it is just 
possible to remain stationary by standing on the 
forward pedal when the pedal arm is horizontal.  
The arm of the pedal has a length of 17 cm , the 
front gear has a diameter of 20cm , the back gear 
has a diameter of 10cm , and the wheel has a 
diameter of 60cm.  If you ignore the mass of the 
bicycle, what is the gradient of the hill? 

{ ~16.5° } 
 

A3. A uniform narrow rod, 1m in length, has the section from 60cm to 90cm from one end replaced by 
a mass-less section of the same length. 

(a) Calculate by integration the new location of the centre of mass of the rod. 

(b) Show that the same result can be obtained by calculating the centre of mass of the centres of 
mass of the two remaining sections. 

(c) Show that the same result can be obtained by calculating the centre of mass of the original 
uniform rod and that of the 30cm section if it is treated as having negative mass. 

(d) A uniform sphere of radius 𝑟 has a sphere of radius 𝑟/2 cut out of it.  The cut-out section just 
touches the larger sphere’s centre.  Where is the centre of mass of this damaged sphere? 

{ (a) at 39.3cm from one end; (d) 𝑟/14 from the centre of the large sphere, on the axis of 
symmetry of the damaged sphere, away from the missing small sphere} 
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A4. A clockmaker wishes to design a new clock with a timing 
mechanism that uses the period of oscillation of a solid, 
uniform cone of mass 𝑀.  A cone is suspended from its 
apex, A, so that it rotates about the 𝑥-axis such that its 
centre of mass can swing freely in the 𝑦 − 𝑧 plane, as 
shown in the diagram. 

Find an expression for the moment of inertia of the cone 
about the x-axis at A in terms of the mass of the cone 𝑀, 
its radius 𝑎 and its height ℎ. 

{$%
&'
(𝑎& + 4ℎ&) } 

 
The following question is an example of the conservation of 
angular momentum, and the transformation of energy 
between different forms. Imagine that you are an astronaut in 
the spacecraft sitting on a bench in the middle and looking 
out of a window in the curved side of the spacecraft. You are 
holding the string of part (b). As you slowly let out the string, 
think about the tension you feel in the string, the work you do, 
and what you see out of the window. 

A5. A spacecraft can be regarded as a uniform, thin, hollow cylinder, 1m in diameter and of mass 
250kg (including a small mass, m=50 g).  The flat ends of the cylinder are of negligible mass.  It is 
spinning about its cylindrical axis with a period of 3 s. 

(a) What is the angular momentum of this isolated system? This quantity remains constant for all 
time. 

(b) The 50 g mass, m, is attached to a long string and slowly let out from the side of the 
cylinder until the period has increased to 10 minutes. Explain why the period increases 
and calculate the length of the string. 

(c) The cylinder slows down when the string is let out, so it must feel a torque. Draw a diagram 
showing clearly how the torque arises. 

(d) Calculate the initial and final kinetic energies of rotation of the system. 

(e) An electric motor in the cylinder is now switched on to wind in the string slowly. Explain 
why it has to do work. Where does the work go? 

{ (a) 130.9	kg	m&s() ; (b) 499 m; (d) 137.1	J, 0.69	J } 

A6. A (i) solid cylinder, (ii) hollow cylinder, (iii) and solid sphere, each of radius 𝑎, roll down a ramp from 
height ℎ' to perform a classic “loop the loop” stunt on meeting a circular track of radius 𝑅, in the 
vertical plane. [Assume that the track is perfectly frictional, that the objects just make the stunt and 
that the join between ramp and loop is ideal] 

(a) Find expressions for the starting heights, ℎ', in terms of 𝑅 for each of the objects (i-iii) given 
that their radii 𝑎 ≪ 𝑅. 

(b) What starting height must the sphere have if the track now has a V-groove cross section with 
total internal angle of 60 degrees? 

{ (a) (i-iii) ℎ' =
*
&
E5 + +

,-!
G ; (b) ℎ' =

$$*
)'

 } 
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A7. A thin uniform rod of mass 𝑀 is supported horizontally on knife edges at each end. If one of the 
supports is suddenly removed, show that the force on the other end is instantaneously reduced 
from 𝑀𝑔/2	 to 𝑀𝑔/4, where 𝑔 is the magnitude of the gravitational acceleration. 

A8. In a mill, grain is ground by a massive wheel 
that rolls without slipping in a circle on a flat 
horizontal mill stone driven by a vertical shaft.  
The rolling wheel has mass 𝑀, radius 𝑎 and is 
constrained to roll in a horizontal circle of 
radius𝑟, at angular speed Ω.  The wheel 
pushes down on the lower mill stone with a 
force equal to twice its weight (normal force).  
The mass of the axle of the wheel can be 
neglected.  What is the value of Ω. ?  [Assume 
that both the angular speed of the wheel and Ω remain constant]  

{	Ω = J&.
-

.  } 
 

Several further questions on rotational mechanics from past Tripos papers (not 
compulsory): 

2009 B7: {Answer: 𝜔 = 6L2𝑔ℎ/7l; ℎ/49} 

2007 B9: {Answer: mu, applied 2a/5 above centre; 7mu2/10; J)'
/
𝑔(𝑟 + 𝑎)(1 − cos 𝜃)  } 

2004 A1: {Answer: h0/2 } 

2004 A2: {Answer: 34ma2/3} 
2003 B7: {Answer: L3𝑔/𝐿;𝑚L𝑔𝐿/3;𝑚L3𝑔𝐿/4 at 2L/3 from the axis}  

P 

r	
a	joint 
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Relativistic Kinematics is the application of the Special Theory of Relativity to space 
and time. Please read the following general advice on how to tackle kinematical relativity 
problems before proceeding. 

Some or all of the following ‘rules’ can be applied to solve any kinematical problem in 
Special Relativity. If you apply the rules carefully, without first muddling yourself with too 
much potentially confusing thought about what contracts and what dilates etc., you will 
get the right answer. You can ponder about what it all means when you know that you 
have the right answer! 

(i) Identify the events. Label them A, B, C etc. Thus event A may be the flash of a 
light, B the spaceship exploding, C the arrival of a message at the Earth etc. 

(ii) Draw diagrams showing the events in the relevant frames of reference. Thus 
you might show events A and B as seen both in the Earth frame and in the rocket 
frame. 

(iii) Write down the intervals between the events in all frames. Set these equal to 
known quantities where you can and put a question mark where you can’t. Thus you 
might write Δ𝑥123 = 𝑙!	; 	Δ𝑥12 =	? ; 	Δ𝑡123 = 4!

5
	 ; 	Δ𝑡12 =	? 

(iv) Apply the Lorentz transformation to the intervals to find the unknown values. If 
S’ is the frame moving at speed 𝑣 parallel to, and in the direction of, the positive 𝑥 
axis of frame S, then the Lorentz transformation of the interval  
(∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡),	between two events as observed in the S frame, and the interval 
(∆𝑥3, ∆𝑦3, ∆𝑧3, ∆𝑡3),	between the same two events as observed in the S’ frame is: 
 
∆𝑡3 = 𝛾 ^∆𝑡 − 6∆8

5"
_  ∆𝑡 = 𝛾 ^∆𝑡3 + 6∆8#

5"
_  

∆𝑥3 = 𝛾(∆𝑥 − 𝑣∆𝑡)  ∆𝑥 = 𝛾(∆𝑥3 + 𝑣∆𝑡3)  
∆𝑦3 = ∆𝑦  ∆𝑦 = ∆𝑦3  
∆𝑧3 = ∆𝑧  ∆𝑧 = ∆𝑧3  

 

Where 𝛾 = a
'

9':$
"

%";
     

Or using 4-vectors and matrices: 
 

b
𝑐𝑡3
𝑥3
𝑦3
𝑧3
d = b

𝛾 −𝛾𝑣/𝑐
−𝛾𝑣/𝑐 𝛾

0				 0
0				 0

0					 0
0				 0

1				 0
0				 1

df
𝑐𝑡
𝑥
𝑦
𝑧
g 
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Standard problems. 

Special Relativity kinematics: these two examples are about reference frames. The first 
example provides practice in applying the concepts of length contraction and time dilation. 

11.  (a)  A positive kaon (𝐾<) has a lifetime of 0.1237 𝜇s	in its own rest frame.  It has a 
 speed 0.990𝑐 relative to a laboratory frame of reference.  How far can it travel in 
 the  laboratory frame during its lifetime according to classical physics and special 
 relativity? 

(b)  Two events occur in the same place in the laboratory frame and are separated 
by  a time interval of 2 s.  The time interval between these two events when 
 measured from a rocket’s frame is 4 s.   

(i) Deduce the Lorentz factor 𝛾 and hence calculate the speed of the rocket 
relative to the laboratory frame. 

(ii) Calculate the distance between the two events in the rocket frame. 

(c) A metre stick is 2 cm wide and is aligned in the north-south direction.  How fast 
and which direction, relative to an observer, is the metre stick moving if its length 
appears the same as its width? 

{ (a) 36.7 m, 260.4 m ; (b) (i) 2, √3c/2 (ii)2√3𝑐  ; (c) 0.9998𝑐   } 

The next example is a variation of the so-called twin paradox. There is no paradox if you 
are careful to analyse the circumstances of each twin strictly according to the rules of 
special relativity. A paradox only arises if your analysis is faulty, or your thinking is woolly! 

12. A spaceship sets off from Earth for a distant destination, travelling in a straight line 
at a uniform speed of 3c/5. Ten years later, as measured on the Earth, a second 
spaceship sets off in the same direction with a speed of 4c/5. The captains of the two 
vessels are twins. 

(a) For how long, in the Earth’s frame, do each of the spaceships travel before the 
second spaceship catches up with the first? 

Consider three events: (A) the slower spaceship leaves the Earth; (B) the faster spaceship 
leaves the Earth; and (C) the faster spaceship catches up with the slower spaceship. 

(b) If the event A has coordinates x = 0 ,  t = 0  in the Earth’s frame, what are the 
coordinates of the other two events, also as observed in the Earth’s frame? 

(c) By transforming these events to frames moving with the slower and faster 
spaceships respectively, determine which of the twins is older, and by how 
much, when the faster spaceship catches up with the slower spaceship. 

{ (a) 40 years, 30 years; (b) x=0, t=10 years and x=24 light years, t=40 years; 
(c) the first captain is older by 4 years } 
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Two further examples of transformation of distances and times between different frames. 

13. As a spaceship passes the Earth with a speed of 0.8 c, observers on this spaceship 
and on the Earth agree that the time is 12:00 in both places. Thirty minutes later, as 
measured on the spaceship’s clock, the spaceship passes an interplanetary 
navigation station fixed relative to the Earth. The clock on the interplanetary 
navigation station reads Earth time. 

(a) What is the time on the navigation station clock as the spaceship passes? 

(b) How far from Earth, as measured in the Earth’s frame, is the navigation station? 

(c) As the spaceship passes the navigation station, it reports back to Earth by 
radio. When, according to a clock on the Earth, is the signal received? 

(d) There is an immediate reply from Earth. When, according to the spaceship's 
clock, is the reply received at the spaceship? 

{ (a) 12:50; (b) 40 light minutes =7.2 × 10''m ; (c) 13:30; (d) 16:30} 

14. A flash of light is emitted from the tail of a rocket of length 𝑙! (measured in its rest 
frame) towards the nose.  The flash is reflected by a mirror at the nose and 
received back at the tail.  If the rocket is moving at speed 𝑣 relative to the Earth, 
what are the time intervals measured in the Earth’s frame between the emission, 
reflection, and reception of the flash? 

{l(𝑐 + 𝑣)/(𝑐 − 𝑣). (l!/c)	; l(𝑐 − 𝑣)/(𝑐 + 𝑣). (l!/c) } 

An example of the effects of simultaneity as viewed in different frames 

15. A very fast train, of length 𝐿! (measured in its own frame), rushes through a station 
which has a platform of length 𝐿 (<𝐿!) in the rest frame of the station.  

(a) What is the speed 𝑣 of the train such that the back of the train is opposite one 
end of the platform at exactly the same instant as the front of the train is 
opposite the other end, according to observers on the platform? 

(b) According to these observers, two porters standing at either end of the platform 
(a distance 𝐿	apart) are foolish enough, but have quick enough reactions, to 
kick the train simultaneously as it passes, thereby making dents in it.  When the 
train stops, the dents are found to be a distance 𝐿! apart.  Explain in words and 
with diagrams how the difference between 𝐿 and 𝐿! is explained by  

(i) an observer on the platform, and 

(ii) an observer travelling on the train? 

(c) According to an observer on the train, what is the length of the platform, 𝐿3, in 

terms of 𝐿! and 𝛾.                                       { (a)𝑣 = 𝑐N1 − ^ =
=!
_
%
	  ; (c)𝐿3 = 𝐿!/𝛾% } 
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The relativistic transformation of speeds 
These are the formulas you must use when adding speeds together, or transforming speeds 
from one inertial frame to another. For example, consider the case of a passenger walking 
along the corridor of a carriage of a train in the same direction as the train is travelling 
from a classical, non-relativistic, point of view. Inside the train, the passenger’s speed is 𝑢83  
relative to the carriage.  If the train is also moving at speed v relative to the tracks, then the 
passenger’s speed relative to the tracks is 𝑢8 = 𝑢83 + 𝑣 .  This result applies when both 𝑢83  and 
v are very much less than the speed of light, c,  

i.e.: The classical approximation (if both 𝑢83 ≪ 𝑐 and 𝑣 ≪ 𝑐	)  
𝑢8 = 𝑢83 + 𝑣
𝑢> = 		𝑢>3 										
𝑢? = 𝑢?3 									

 

Now consider the case in which the passenger is an astronaut moving along a spaceship at 
a speed 𝑢83  relative to the spaceship in the same direction as the spaceship is travelling.  
Suppose that the spaceship’s speed with respect to the Earth is 𝑣, and that 𝑣 is comparable 
with 𝑐.  In this case, you must use the relativistic transformation of speeds formulas to find the 
astronaut’s speed, 𝑢8, with respect to the Earth as follows: 

Relativistic (always true) 

𝑢8 =
𝑢83 + 𝑣

1 + 𝑢83 𝑣/𝑐%

𝑢> = 	
𝑢>3

𝛾(1 + 𝑢83 𝑣/𝑐%)
	

𝑢? =
𝑢?3

𝛾(1 + 𝑢83 𝑣/𝑐%)

 

 
Two examples of the way speeds transform between different frames 
 
16. Two sub-atomic particles approach each other with velocities (relative to an 

observer at rest in the laboratory) of 3c/5 and -2c/5. What is the speed of one 
particle as observed in the frame of reference of the other? With what velocity 
would the observer have to move to measure their velocities as equal and opposite? 

{25𝑐/31, 0.134𝑐  } 

17. A 𝜋! meson, travelling with velocity (3𝑐/4,0,0,0) in the laboratory frame, S, decays 
into two photons in the 𝑥𝑦- plane. In S’, the rest frame of the meson, one of the 
photons is emitted at an angle 𝜃3 = 60°  to the 𝑥3-axis. In frame S, calculate the 𝑥 
and 𝑦 components of the velocities of the two photons, and hence their angles of 
emission with respect to the 𝑥 axis. 

{https://isaacphysics.org/questions/nst1A_SR_q17} 
 
 
 
 
 

https://isaacphysics.org/questions/nst1A_SR_q17
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A question about the relativistic Doppler Effect. One way of thinking about this is to 
imagine that the reflected pulses are coming from the image of the rocket as seen in a 
plane mirror (the planet’s surface). 

18. A rocket moving away from the Earth with speed v emits light pulses with a 
frequency f0 of one pulse per second as measured by a clock on the rocket. 

(a) Show that the rate, f, at which the pulses are received on the Earth is given by 

𝑓 = 𝑓!N
𝑐 − 𝑣
𝑐 + 𝑣 

 

(b) The rocket travels to a distant planet, and the signals are received on Earth 
both directly and by reflection from the planet. The pulse rates for the two 
signals are found to be in the ratio 1 : 2. Explain why this is so, and deduce the 
speed of the rocket. 

(c) If the rocket transmits only during its flight and the number of pulses received 

directly is 104, what is the distance of the planet from the Earth? 
{ (b) 𝑐/3 ; (c)1.06 × 10'%m   } 
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Relativistic Dynamics is the application of the Special Theory of Relativity to energy and 
momentum etc. Please read the following general advice on how to tackle relativistic 
dynamics problems before proceeding with the examples. 

It is not so easy to identify a fixed set of ‘rules’ for solving relativistic dynamics 
problems. However, there are certain principles which can be acknowledged, some or all 
of which may be helpful in any given case: 

(i) Identify the events, and label them A, B, C etc. 

(ii) Draw diagrams showing the conditions before and after the events in a given 
frame (e.g. the energies, momentums, masses, and velocities of particles before 
and after a collision event in the laboratory frame). 

(iii) If possible, identify another frame (such as the zero-momentum frame) in 
which it is easier to make calculations. Draw diagrams showing conditions before 
and after events in this frame. 

(iv) Apply the principle of the conservation of linear momentum in any single 
frame before and after any event, i.e. 

*𝒑"
"

= constant, 

Where 𝒑 = 𝛾6𝑚𝒗, m is the mass, 𝒗 is the velocity in this frame, and 𝛾6% =
'

(':6"/5")
	  

The momentum can also be expressed in terms of 𝛾6 as	𝑝% = |𝒑|𝟐 = 𝑚%𝑐%(𝛾6% − 1) . 

(v) Apply the energy-momentum invariant: 

𝐸'% − 𝑝'%𝑐% = 𝐸%% − 𝑝%%𝑐% = constant 

Where 𝐸' and 𝒑' are the total energy and the total momentum in the system 
respectively, evaluated at time 1 or in frame 1 etc.  By ‘system’ we mean either a 
single particle, or a group of particles, or the contents of a whole frame.  Note that 
𝐸% − 𝑝%𝑐% is the same before and after any event when calculated in any inertial 
frame, provided that you don’t change the system. E is the total energy given by  

𝐸 =*𝛾"𝑚"𝑐%
"

, 

Where 𝛾" is the value of 𝛾 appropriate to the ith particle whose mass is 𝑚" . It must 
include particles which are stationary (i.e. 𝛾 = 1) as well as moving particles. Add 
up all the energies, then square the total to get 𝐸%. 

Note that the kinetic energy is not 𝑚𝑣%/2, nor is it 𝛾𝑚𝑣%/2. The kinetic energy, 𝐾, is simply 
the difference between the energy a particle has when it is moving and the energy it has at 
rest, i.e. 

K	=	γmc2	–	mc2	=	(γ-1)	mc2. 
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Similarly, add up all the contributions to the momentum (as vectors) before squaring the 
magnitude of the result.   For a single particle: 𝐸% − 𝑝%𝑐% = 𝑚%𝑐) . 

(vi) Apply the Lorentz transformation to energy and momentum. You will hear 
mention of four-vectors which transform according to the Lorentz transformation. 
There are many four vectors, such as the four vector (ct,	 x,	 y,	 z). Energy and 
momentum can also be combined to form the energy-momentum four-vector (E/c,	
px,	py,	pz). If a particle has an energy E and a momentum given by p	=	(px,	py,	pz) as 
observed in frame S, then the corresponding quantities in frame S’ are given by 

 
𝐸3/𝑐 = 𝛾 ^𝐸/𝑐 − 6D&

5
_  𝐸/𝑐 = 𝛾 ^E

#

5
+ 6D&#

5
_  

𝑝83 				= 𝛾 ^𝑝8 −
6E
5"
_  𝑝8 			= 𝛾 ^𝑝83 +

6E#

5"
_  

𝑝>3 				= 𝑝>  𝑝> 			= 𝑝>3   
𝑝?3 				= 𝑝?  𝑝? 			= 𝑝?3   

Where 𝛾 = a
'

9':$
"

%";
     

Or using 4-vectors and matrices: 
 

⎝

⎛

𝐸3/𝑐
𝑝83
𝑝>3

𝑝?3 ⎠

⎞ = b

𝛾 −𝛾𝑣/𝑐
−𝛾𝑣/𝑐 𝛾

0				 0
0				 0

0					 0
0				 0

1				 0
0				 1

db

𝐸/𝑐	
𝑝8
𝑝>
𝑝?

d 

 
The next few questions are about Relativistic Dynamics – i.e. how energy and momentum 
transform between moving frames. Please first read the advice on Pages 19 & 20. 

19. A particle as observed in a certain reference frame has a total energy of 5 GeV and 
momentum of 3 GeV/c 
(a) What is the velocity of the particle in this frame and therefore what is the value of 

𝛾? 
(b) What is its mass in units of GeV/𝑐%? 
(c) Observed in another frame of reference, the particle has a total energy of 4√2 GeV   

and a momentum of 4 GeV/𝑐. Use the formulae for the relativistic transformation 
of speeds, or the energy- momentum transformation, to find the relative speed of 
the two frames of reference, if the particles are moving in the same direction. 

{ (a)3𝑐/5; 5/4	;(b) 4	GeV/𝑐% (c) -0.186𝑐 } 

20. Estimate the energy required to accelerate an electron from rest to half the speed of 
light. How does this compare with the result of the same calculation carried out 
non-relativistically?  What is the ratio of the two energies?  Is it important to consider 
relativistic equations at speeds = 𝑐/2 

{ 79 keV; 64 keV; 1.24 } 
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21. If K represents the relativistic kinetic energy of a particle of mass , show that 

𝐾% + 2𝑚𝐾𝑐% = 𝑝%𝑐%, 
where 𝑝 represents the momentum of the particle. 

A particle of mass 𝑚 and kinetic energy 𝐾 strikes and combines with a stationary particle of 
mass 2𝑚, producing a single composite particle of mass √17𝑚 . Find the value of 𝐾  

                                                                                                                             {2𝑚𝑐%} 

2 2 .  A particle of mass 𝑀 disintegrates while at rest into two parts having masses of 𝑀/2 
and 𝑀/4.  Find the relativistic kinetic energies of each part. 

[Hint: Use the result from the first part of question 21.] 

{3𝑀𝑐%/32, 5𝑀𝑐%/32   } 

Another collision question. Try transforming into the ZMF to simplify the problem. The 
value of the E-p invariant is the same before and after a collision, as viewed in any 
inertial frame. 

23. A high-energy proton hits a stationary proton and produces a neutral 𝜋!meson (a 
pion) with mass of 0.144 times the proton mass via the reaction 

𝑝 + 𝑝 → 𝑝 + 𝑝 + 𝜋!	meson 

(a) If the incident proton has just enough energy to allow this reaction to occur, 
what is the velocity (speed 𝑣 and direction) of the final protons and the pion in 
the laboratory frame of reference? 

(b) The neutral pion is observed to decay into two photons of equal energy in the 
laboratory frame.  If 𝜃 is the angle between the 𝜋!	direction and the direction of 
either of the photons (as observed in the laboratory frame), find an expression 
for cos 𝜃	in terms of 𝑣 and 𝑐 and hence determine the opening angle between the 
two photons.   

(c) If the 𝜋!meson decays with a proper lifetime of 8.4 × 10:'*s  (as measured in its 
rest frame), how far on average does it travel in the laboratory frame before 
decaying?  

{https://isaacphysics.org/questions/nst1A_SR_q23} 

24. An 𝛼-particle has twice the charge and four times the mass of a proton. If an 
accelerator imparts √6	times as much momentum to an initially stationary 𝛼- 
particle as it does to an initially-stationary proton, what is the accelerating voltage? 

{ 1.89 GV } 
 

 

https://isaacphysics.org/questions/nst1A_SR_q23
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Additional Problems [not compulsory] 

A9. The space and time coordinates of two events as measured in a Galilean frame G are as follows: 
 Event A: 𝑥0 	= 𝑥',			𝑡0 = 𝑥'/𝑐	    
 Event B:  𝑥1 = 2𝑥', 𝑡1 = 𝑥'/(2𝑐)   

Where 𝑦 = 𝑧 = 0  for both events. 

(a) What is the speed and direction of travel of another Galilean frame G’ in which both 
events occur at the same place? (Use the Galilean transformation – i.e. the classical, non-
relativistic transformation. Assume the “standard configuration” for the frames G and G’, 
with G’ moving at speed 𝑣 along the +𝑥- axis, and the origins of G and G’ coinciding at  𝑥 =
𝑥2 = 0, 𝑡 = 𝑡2 = 0 ) 

(b) Comment on the result. In particular, explain why the Galilean transformation is 
inappropriate in this example. 

(c) Can the events be seen to occur at the same time in any Galilean frame? 
(d) Now use the Lorentz transformation to calculate the speed and direction of travel of an 

inertial frame S’ in which both events occur at the same time. (Take the “standard 
configuration” for the frames S and S’, which is that S’ moves at speed v along the x-axis, 
and the origins of S and S’ coincide at the instant 𝑥 = 𝑥2 = 0, 𝑡 = 𝑡2 = 0.) 

(e) Comment on the result. In particular, explain why the Lorentz transformation is appropriate in 
this example. 

(f) When and where do the events occur as measured in S’? 

{ (a) −2𝑐 ;  (d)−𝑐/2 ;  (f)	𝑡2 = √3(𝑥'/𝑐), 𝑥02 = √3𝑥', 𝑥12 = 3√3𝑥'/2  } 

A10. A rocket leaves Earth travelling at a speed of v.  After the rocket has travelled a distance it emits light 
signals towards Earth to communicate its position.  After the second rocket signal is received on Earth 
a reply is sent from Earth to the rocket.  The time-distance graphs below illustrate the Earth and 
Rocket frames. 

 

(a) From these diagrams we see that ∆𝑥012 = 0 , show therefore that the time between the two 
pulses leaving the rocket in the rocket’s frame (∆𝑡012 ) is dilated compared with the Earth’s 
frame ( ∆𝑡01 ). 

(b) From these diagrams we see that ∆𝑥34 = 0, show therefore that the time between the two 
pulses received on Earth in the Earth’s frame (∆𝑡34 ) is dilated compared with the rocket’s 
frame ( ∆𝑡342  ).  Explain why the answer to (b) is the reverse of the answer to (a). 

(c) Calculate how far the rocket has moved away from the Earth, in both frames, in the time 
between the two pulses being received on Earth ( ∆𝑡34 and ∆𝑡342 ).  What is the ratio between 
these two distances? 
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(d) Calculate the distance of the rocket from Earth in both frames ( 𝑑	and 𝑑2) when the reply from 
Earth is received.  Give your answer in terms of 𝑣, ∆𝑡56 	and	𝛾. 

{ (a)∆𝑡012 = ∆8"#
9
;	 (b) )∆𝑡34 =

∆8$%
&

9
;   (c))

9
  ;  (d) 𝑑 = 𝑣∆𝑡56 , 𝑑2 =

:∆8'(
9

  } 

 
A11. A rocket of length 𝐿' measured in its rest frame S’ is travelling away from an observer on Earth (frame 

S) with a velocity 𝑢 = 9𝑐/41 .  A light pulse is emitted from the nose of the rocket ( 𝑥2 = L', 𝑡2 = 0) 
and travels to the tail (𝑥2 = 0)  - where it is reflected back to the nose and continues back and forth 
between the tail and the nose.   

(a) Draw time-distance diagrams for the Earth (S) and rocket (S’) frames showing clearly the light 
pulse and its reflection and the rocket and Earth as appropriate.  [Label ALL the events on your 
diagram and refer to the intervals in space and time using these labels as subscripts.] 

(b) In S’, when does the light pulse reach the tail and when does it get back to the nose? 

(c) How long does the light pulse take to travel from nose to tail and back again as determined by 
the observer on Earth (S)? 

(d) By considering the passage of the light from the nose to the tail, calculate 𝐿(the length of the 
rocket in S) in terms of 𝐿' and hence show that the rocket is length contracted according to the 
observer in the Earth’s frame.  Show that the answer is the same if you consider the pulse from 
tail to nose. 

 { (b)𝐿' �̂� 
2𝐿' �̂�   ;   (c)	4𝐿' 5𝑐^  5𝐿' 4𝑐^    ;   (d) 40𝐿' 41^   } 

The following question can be done in many ways but it is intended as practice in the 
relativistic transformation of speeds. 

A12. Angela is living on Mars and has decided that she would like to meet up with her friend Bob (who 
lives on Earth) at some location between them.  Angela agrees that she will set off from Mars at 12 
noon (in all frames) travelling at	𝑢 = −5𝑐/13  and at that instant she will send a message to Bob so 
that when he receives her signal he can then set off to meet her at velocity 𝑣 = 12𝑐/13.  At the instant 
that Bob leaves Earth he sends a signal to Angela to say he has left.  Angela replies with her location, 
as does Bob when he receives her second message.  They continue to communicate back and forth 
until they meet.   

(a) Draw time-distance diagrams for the Earth’s frame (S), Angela’s frame (S’) and a frame that is 
moving at 12𝑐/13  (S’’).  Include on all of them the passage of the signals between Angela and 
Bob. 

 [You will need to calculate Bob’s velocity in Angela’s frame (S’) and Angela’s velocity in S’’ and 
the Earth’s velocity in both of these frames] 

(b) At what time in S, S’ and S’’ does Bob leave to meet Angela?  [Mars is ~ 12 light minutes  from 
Earth in S] 

(c) How far apart in S, S’ and S’’ are Angela and Bob when Angela receives Bob’s message that he 
has left?  Give you answers in units of light minutes. 

(d) At what time do they meet in S, S’ and S’’ and how far away from Earth are they in S, S’ and S’’?  
Again give your answer in units of light minutes 

{ (b) 12:12, 12:08, 13:00; (c) 16c/39, 64c/229, 16c/15;  (d) 12:17.6,  12:16.3, 13:02.2;  5.21c 
4.81c, 2.00c } 
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The next few questions are about relativistic mass and energy calculations. 
A13. The bulk of the energy production in the Sun is from the conversion of hydrogen into helium via the 

proton-proton cycle of reactions.  Overall, these reactions amount to the formation of one helium 
nucleus from four protons with the release of two massless neutrinos (each of average energy 0.25 
MeV) and several photons:   4𝑝; + 2𝑒( → He&

< &; + 2𝜈 + 6𝛾 

 The kinetic energy carried off by the photons and alpha-particles is dissipated as heat which is the 
source of energy for the Sun’s luminosity.  The neutrinos escape from the Sun without interacting. 

(a) Calculate the energy (in MeV) released by the formation of one helium nucleus from four 
protons used to heat the Sun.  (The masses of a proton and of a helium nucleus are 1.00728	𝑚= 
and 4.00150	𝑚= respectively and 1𝑚= = 931.5	MeV/𝑐& .) 

(b) The total optical and infrared luminosity of the Sun is 3.9× 10&>	W. Estimate the mass of 
hydrogen being converted to helium in the core of the Sun every second. 

(c) What fractional rate of loss of mass does this represent in terms of the number of solar masses 
per second?  (The mass of the Sun,1	M⊙, is about 2 × 10$' kg .) 

(d) If the Sun expires as a red-giant when 10% of the mass of the Sun is converted into helium (the 
Schonberg-Chandrasekhar limit), work out the lifetime of the Sun. 

{ (a) 26.3 MeV; (b) 6.2 × 10))kg	s() ; (c) 3.1× 10()@M⊙s() ; (d) 10)' years } 

A14. The supernova explosion SN1987A was observed on 23rd January 1987 in the Large Magellanic Cloud 
(LMC), a nearby galaxy only 160,000 light years from the Solar System, and was the brightest and 
best studied supernova since 1604.  A pulse of 20 neutrinos from SN1987A was detected by 2 
experiments.  All 20 neutrinos arrived within a time interval of 10 s and their energies ranged from 
7.5 to 40 MeV. 

(a) If the neutrino has mass 𝑚, derive an exact expression for the time it takes a neutrino of total 
energy 𝐸 to travel from the LMC to a detector on Earth.  Derive an approximate expression for 
the time, in the case where the total energy of the neutrino is very much larger than its rest 
mass energy. 

(b) From laboratory experiments based on studies of tritium-decay, the neutrino mass is known to 
be very small: < 7	eV/𝑐& .  Use the supernova data to obtain an alternative approximate upper 
limit to the mass of the neutrino by assuming that the high energy neutrinos ( 40 MeV) arrive 
first and the low energy neutrinos (7.5 MeV) arrive last. 

{(a)𝑡 = A

BCD)()
!*+

%!
E
, 𝑡 ≈ A

BD)()
!*+

!%!
E
;  (b) 15.2 eV/ c2 } 

Several further questions on special relativity from past Tripos papers (not compulsory): 

2009 B8: {Answer: the star is 4 light-years away; clock on Ship B reads 18 years when it gets the message; 
ship B arrives home when Earth time is 45 years; clock on ship A is ahead of that on ship B by 5 years.} 

2006 B9 (Answer: 25 days after start, 15 light-days from Earth; 64 days after start; 4 days’ supply left.) 

2003 B8: {Answer: f/3; 3t} 

2008 B8: {Answer: 3c/5; 4c/5; 1.5 GHz} 

2007 B7: {Answer: 0.061r/c; 0.71fMc/(0.75fM+m)} 

2005 B7: {Answer: $,
√&
	= 2.12	m	; E$

&
G𝑚𝑐&, E$

<
G𝑚𝑐&; E$

<
G𝑚𝑐, 71° } 

2000 C13: {Answer: 4c/5, √7c/4} 

Please email me (slw55@cam.ac.uk) with any corrections or suggestions. 

mailto:slw55@cam.ac.uk

